The Observed Trojans and the Global Dynamics Around The Lagrangian Points of the Sun–Jupiter System

Article

Abstract

In this paper, we make a systematic study of the global dynamical structure of the Sun–Jupiter L4 tadpole region. The results are based on long-time simulations of the Trojans in the Sun, Jupiter, Saturn system and on the frequency analysis of these orbits. We give some initial results in the description of the resonant structure that guides the long-term dynamics of this region. Moreover, we are able to connect this global view of the phase space with the observed Trojans and identify resonances in which some of the real bodies are located.

Keywords

Arnold web Frequency Map analysis Trojan asteroids resonances 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beaugé, C., Roig, F. 2001‘A semianalytical model for the motion of the trojan asteroids: proper elements and families’Icarus153391415CrossRefGoogle Scholar
  2. Bien, R., Schubart, J. 1984‘Trojan orbits in secular resonances’Celest. Mech. Dynam. Astron.34425434Google Scholar
  3. Bowell, E.: 2001, ‘The asteroid orbital elements database’. For more information, visit the URL http://www.naic.edu/˜nolan/astorb.html.Google Scholar
  4. Celletti, A., Giorgilli, A. 1991‘On the stability of the Lagrangian points in the spatial restricted three body problem’Celest. Mech. Dynam. Astron.503158CrossRefGoogle Scholar
  5. Dvorak, R., Tsiganis, K. 2000‘Why do Trojan ASCs (not) escape?’Celest. Mech. Dynam. Astron.78125136CrossRefGoogle Scholar
  6. Ferraz-Mello, S. 1997‘A symplectic mapping approach to the study of the stochasticity in asteroidal resonances’Celest. Mech. Dynam. Astron.65421437CrossRefGoogle Scholar
  7. Gabern, F.: 2003, ‘On the dynamics of the Trojan asteroids’. Ph.D. thesis, University of Barcelona. http://www.maia.ub.es/∼gabern/.Google Scholar
  8. Gabern, F., Jorba, A. 2001‘A restricted four-body model for the dynamics near the Lagrangian points of the Sun–Jupiter system’Discrete Contin. Dyn. Syst. Series B1143182Google Scholar
  9. Gabern, F., Jorba, A. 2004‘Generalizing the restricted three-body problem. the bianular and tricircular coherent problems’Astron. Astrophys.420751762CrossRefGoogle Scholar
  10. Gabern, F., Jorba, A., Robutel, P. 2004‘On the accuracy of restricted three-body models for the trojan motion’Discrete Contin. Dyn. Syst.11843854Google Scholar
  11. Giorgilli, A., Delshams, A., Fontich, E., Galgani, L., Simó, C. 1989‘Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three body problem’J. Differential Equations77167198CrossRefGoogle Scholar
  12. Giorgilli, A., Skokos, C. 1997‘On the stability of the Trojan asteroids’Astron. Astrophys.317254261Google Scholar
  13. Jorba, À., Villanueva, J. 1997‘On the persistence of lower dimensional invariant tori under quasi-periodic perturbations’J. Nonlinear Sci.7427473CrossRefGoogle Scholar
  14. Laskar, J. 1990‘The chaotic motion of the solar system A numerical estimate of the size of the chaotic zone’Icarus88266291CrossRefGoogle Scholar
  15. Laskar, J. 1999

    ‘Introduction to frequency map analysis’

    Simó, C. eds. Hamiltonian Systems with Three or More Degrees of FreedomNATO ASI. Kluwer Academic PublishersDordrecht134150
    Google Scholar
  16. Laskar, J., Robutel, P. 2001‘High order symplectic integrators for perturbed Hamiltonian systems’Celest. Mech. Dynam. Astron.803962CrossRefGoogle Scholar
  17. Levison, H., Shoemaker, E., Shoemaker, C. 1997‘The long-term dynamical stability of Jupiter’s Trojan asteroids’Nature3854244CrossRefGoogle Scholar
  18. Marzari, F., Scholl, H. 2002‘On the instability of Jupiter’s Trojans’Icarus159328338CrossRefGoogle Scholar
  19. Michtchenko, T., Beaugé, C., Roig, F. 2001‘Planetary migration and the effects of mean motion resonances on Jupiter’s Trojan asteroids’Astron. J.12234853491CrossRefGoogle Scholar
  20. Milani, A. 1993‘The Trojan asteroid belt: proper elements, stability, chaos and families’Celest. Mech. Dynam. Astron.575994Google Scholar
  21. Milani, A.: 1994, ‘The dynamics of the Trojan asteroids’. In: IAU Symp. 160, Asteroids, Comets, Meteors 1993, Vol. 160, pp. 159–174.Google Scholar
  22. Milani, A., Nobili, A. M. 1992‘An example of stable chaos in the Solar System’Nature357569571Google Scholar
  23. Milani, A., Nobili, A. M., Knezevic, Z. 1997‘Stable chaos in the asteroid belt’Icarus1251331CrossRefGoogle Scholar
  24. Nesvorny, D., Dones, L. 2002‘How long-live are the hypothetical Trojan populations of Saturn, Uranus, and Neptune?’Icarus160271288CrossRefGoogle Scholar
  25. Nesvorny, D., Thomas, F., Ferraz-Mello, S., Morbidelli, A. 2002‘A perturbative treatment of the co-orbital motion’Celest. Mech. Dynam. Astron.82323361CrossRefGoogle Scholar
  26. Robutel, P., Laskar, J. 2000

    ‘Global dynamics in the solar system’

    Pretka-Ziomek, H.Wnuk, E.Seidelmann, P. K.Richardson, D. eds. Dynamics of Natural and Artificial Celestial BodiesKluwer Academic PublishersDordrecht253258
    Google Scholar
  27. Robutel, P., Laskar, J. 2001‘Frequency map and global dynamics in the solar system I’Icarus152428CrossRefGoogle Scholar
  28. Skokos, C., Dokoumetzidis, A. 2000‘Effective stability of the Trojan asteroids’Astron. Astrophys.367729736CrossRefGoogle Scholar
  29. Tsiganis, K., Varvoglis, H., Dvorak, R. 2005‘Chaotic diffusion and effective stability of Jupiter Trojans’Celest. Mech. Dynam. Astron.927389Google Scholar
  30. Yoder, C. 1979‘Notes on the origin of the Trojan asteroids’Icarus40341344CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Astronomie et Systèmes DynamiquesIMCCE, CNRS UMR 8028ParisFrance
  2. 2.Departament de Matemàtica Aplicada i AnàlisiUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations