Advertisement

Celestial Mechanics and Dynamical Astronomy

, Volume 91, Issue 1–2, pp 109–129 | Cite as

On The Origin of The High-Perihelion Scattered Disk: The Role of The Kozai Mechanism And Mean Motion Resonances

  • Rodney S. Gomes
  • Tabaré Gallardo
  • Julio A. Fernández
  • Adrián Brunini
Article

Abstract

We study the transfer process from the scattered disk (SD) to the high-perihelion scattered disk (HPSD) (defined as the population with perihelion distances q > 40 AU and semimajor axes a>50 AU) by means of two different models. One model (Model 1) assumes that SD objects (SDOs) were formed closer to the Sun and driven outwards by resonant coupling with the accreting Neptune during the stage of outward migration (Gomes 2003b, Earth, Moon, Planets 92, 29–42.). The other model (Model 2) considers the observed population of SDOs plus clones that try to compensate for observational discovery bias (Fernández et al. 2004, Icarus , in press). We find that the Kozai mechanism (coupling between the argument of perihelion, eccentricity, and inclination), associated with a mean motion resonance (MMR), is the main responsible for raising both the perihelion distance and the inclination of SDOs. The highest perihelion distance for a body of our samples was found to be q = 69.2 AU. This shows that bodies can be temporarily detached from the planetary region by dynamical interactions with the planets. This phenomenon is temporary since the same coupling of Kozai with a MMR will at some point bring the bodies back to states of lower-q values. However, the dynamical time scale in high-q states may be very long, up to several Gyr. For Model 1, about 10% of the bodies driven away by Neptune get trapped into the HPSD when the resonant coupling Kozai-MMR is disrupted by Neptune’s migration. Therefore, Model 1 also supplies a fossil HPSD, whose bodies remain in non-resonant orbits and thus stable for the age of the solar system, in addition to the HPSD formed by temporary captures of SDOs after the giant planets reached their current orbits. We find that about 12 – 15% of the surviving bodies of our samples are incorporated into the HPSD after about 4 – 5 Gyr, and that a large fraction of the captures occur for up to the 1:8 MMR (a ⋍ 120 AU), although we record captures up to the 1:24 MMR (a ≃ 260 AU). Because of the Kozai mechanism, HPSD objects have on average inclinations about 25°–50°, which are higher than those of the classical Edgeworth–Kuiper (EK) belt or the SD. Our results suggest that Sedna belongs to a dynamically distinct population from the HPSD, possibly being a member of the inner core of the Oort cloud. As regards to 2000 CR105 , it is marginally within the region occupied by HPSD objects in the parametric planes (q,a) and (a,i), so it is not ruled out that it might be a member of the HPSD, though it might as well belong to the inner core.

Keywords

Edgeworth–Kuiper belt scattered disk Kozai comets: dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown, M. E., Trujillo, C. and Rabinowitz, D.: 2004, ‘Discovery of a candidate inner Oort cloud planetoid’, Astrophys. J., in press.Google Scholar
  2. Brunini, A., Melita, M. D. 2002‘The existence of a planet beyond 50 AU and the orbital distribution of the classical Edgeworth–Kuiper belt objects’Icarus1603243CrossRefGoogle Scholar
  3. Chambers, J. E. 1999‘A hybrid sympletic integrator that permits close encounters between massive bodies’MNRAS304793799CrossRefGoogle Scholar
  4. Duncan, M. J., Levison, H. F. 1997‘A disk of scattered icy objects and the origin of Jupiter-family comets’Science27616701672CrossRefPubMedGoogle Scholar
  5. Fernández, J. A., Brunini, A. 2000‘The buildup of a tightly bound comet cloud around an early Sun immersed in a dense galactic environment: numerical experiments’Icarus145580590CrossRefGoogle Scholar
  6. Fernández, J. A., Gallardo, T., Brunini, A. 2002‘Are there many inactive Jupiter family comets among the near-earth asteroid population?’Icarus159358368CrossRefGoogle Scholar
  7. Fernández, J. A., Gallardo, T., Brunini, A. 2003‘The scattered disk population and the Oort cloud’Earth Moon planets924348CrossRefGoogle Scholar
  8. Fernández, J. A., Gallardo, T., Brunini, A. 2004‘The scattered disk population as a source of Oort cloud comets: evaluation of its current and past role in populating the Oort cloud’Icarus172372381CrossRefGoogle Scholar
  9. Fernández, J. A., Ip, W. -H. 1984‘Some dynamical aspects of the accretion of Uranus and Neptune: the exchange of orbital angular momentum with planetesimals’Icarus58109120CrossRefGoogle Scholar
  10. Gladman, B., Holman, M., Grav, T., Kavelaars, J., Nicholson, P., Aksnes, K., Petit, J. -M. 2002‘Evidence for an extended scattered disk’Icarus157269279CrossRefGoogle Scholar
  11. Gomes, R. S. 2000‘Planetary migration and plutino orbital inclination’Astron. J12026952707CrossRefGoogle Scholar
  12. Gomes, R. S. 2003a‘The origin of the Kuiper belt high inclination population’Icarus161404418CrossRefGoogle Scholar
  13. Gomes, R. S. 2003b‘The common origin of the High Inclination TNO’s’, EarthMoon planets922942CrossRefGoogle Scholar
  14. Gomes, R. S., Morbidelli, A., Levison, H. F. 2004‘Planetary migration in a planetesimal disk: why did Neptune stop at 30 AU?’Icarus170492507CrossRefGoogle Scholar
  15. Henrard, J., Lemaitre, A. 1983‘A second fundamental model for resonance’Celest. Mech30197218CrossRefGoogle Scholar
  16. Jewitt, D. G., Luu, J., Trujillo, C. 1998‘Large Kuiper belt objects: the Mauna Kea 8K CCD survey’Astron. J11521252135CrossRefGoogle Scholar
  17. Larsen, J. A., Gleason, A. E., Danzi, N. M., Descour, A. S., McMillan, R. S., Gehrels, T., Jedicke, R., Montani, J. L., Scotti, J. V. 2001‘The spacewatch wide-area survey for bright Centaurs and trans-Neptunian objects’Astron. J121562579CrossRefGoogle Scholar
  18. Luu, J., Marsden, B. G., Jewitt, D., Trujillo, C. A., Hergenrother, C. W., Chen, J., Offutt, W. B. 1997‘A new dynamical class of object in the outer Solar System’Nature387573575CrossRefGoogle Scholar
  19. Malhotra, R. 1993‘The origin of Pluto’s peculiar orbit’Nature365819821CrossRefGoogle Scholar
  20. Malhotra, R. 1995‘The origin of Pluto’s orbit: implications for the Solar System beyond Neptune’Astron. J110420429CrossRefGoogle Scholar
  21. Malhotra, R. 1996‘The phase space structure near Neptune resonances in the Kuiper belt’Astron. J111504516CrossRefGoogle Scholar
  22. Thomas, F., Morbidelli, A. 1996‘The Kozai resonance in the outer Solar System and the dynamics of long-period Comets’Celest. Mech. Dy. Astron64209229CrossRefGoogle Scholar
  23. Trujillo, C. A., Jewitt, D. C., Luu, J. X. 2001‘Properties of the trans-Neptunian belt: statistics from the Canada–France–Hawaii telescope survey’Astron. J122457473CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Rodney S. Gomes
    • 1
  • Tabaré Gallardo
    • 2
  • Julio A. Fernández
    • 2
  • Adrián Brunini
    • 3
  1. 1.GEA/OV/UFRJ and ON/MCT Ladeira do Pedro Antônio, 43Rio de JaneiroBrazil
  2. 2.Departamento de AstronomíaFacultad de CienciasMontevideoUruguay
  3. 3.Facultad de Ciencias Astronómicas y GeofísicasUniversidad de La Plata, Instituto Astrofísico de La Plata, CONICETLa PlataArgentina

Personalised recommendations