Chaotic Diffusion And Effective Stability of Jupiter Trojans

  • Kleomenis TsiganisEmail author
  • Harry Varvoglis
  • Rudolf Dvorak


It has recently been shown that Jupiter Trojans may exhibit chaotic behavior, a fact that has put in question their presumed long term stability. Previous numerical results suggest a slow dispersion of the Trojan swarms, but the extent of the ‘effective’ stability region in orbital elements space is still an open problem. In this paper, we tackle this problem by means of extensive numerical integrations. First, a set of 3,200 fictitious objects and 667 numbered Trojans is integrated for 4 Myrs and their Lyapunov time, T L , is estimated. The ones following chaotic orbits are then integrated for 1 Gyr, or until they escape from the Trojan region. The results of these experiments are presented in the form of maps of T L and the escape time, T E , in the space of proper elements. An effective stability region for 1 Gyr is defined on these maps, in which chaotic orbits also exist. The distribution of the numbered Trojans follows closely the T E =1 Gyr level curve, with 86% of the bodies lying inside and 14% outside the stability region. This result is confirmed by a 4.5 Gyr integration of the 246 chaotic numbered Trojans, which showed that 17% of the numbered Trojans are unstable over the age of the solar system. We show that the size distributions of the stable and unstable populations are nearly identical. Thus, the existence of unstable bodies should not be the result of a size-dependent transport mechanism but, rather, the result of chaotic diffusion. Finally, in the large chaotic region that surrounds the stability zone, a statistical correlation between T L andT E is found.


Jupiter Trojans chaos 1:1 resonance effective stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beaugé, C., Roig, F. 2001‘A semianalytical model for the motion of the Trojan Asteroids: proper elements and families’Icarus153391415CrossRefGoogle Scholar
  2. Celletti, A., Giorgilli, A. 1991‘On the stability of the Lagrangian points in the spatial restricted problem of three bodies’Celest. Mech. Dyn. Astr.503158CrossRefGoogle Scholar
  3. Dvorak, R., Tsiganis, K. 2000‘Why do Trojan ASCs (not) escape?’Celest. Mech. Dyn. Astr.78125136CrossRefGoogle Scholar
  4. Érdi, B. 1988‘Long periodic perturbations of Trojan asteroids’Celest. Mech.43303308Google Scholar
  5. Érdi, B. 1997‘The Trojan problem’Celest. Mech. Dyn. Astr.65149164CrossRefMathSciNetGoogle Scholar
  6. Farinella, P., Vokrouhlický, D. 1999‘Semi-major axis mobility of asteroid fragments’Science28315071510CrossRefPubMedGoogle Scholar
  7. Fernández, Y.R., Sheppard, S.S., Jewitt, D. 2003‘The Albedo distribution of Jovian Trojan asteroids’Astron. J.12615631574CrossRefGoogle Scholar
  8. Giorgilli, A., Skokos, C. 1997‘On the stability of the Trojan asteroids’Astron. Astrophys.317254261Google Scholar
  9. Gomes, R.S. 1998‘Dynamical effects of planetary migration on primordial Trojan-type asteroids’Astron. J.11625902597CrossRefGoogle Scholar
  10. Lecar, M., Franklin, F., Murison, M. 1992‘On predicting long-term orbital instability – A relation between the Lyapunov time and sudden orbital transitions’Astron. J.10412301236CrossRefGoogle Scholar
  11. Levison, H.F., Duncan, M.J. 1994‘The long-term dynamical behavior of short-period comets’Icarus1081836CrossRefGoogle Scholar
  12. Levison, H., Shoemaker, E.M., Shoemaker, C.S. 1997‘The dispersal of the Trojan asteroid swarm’Nature3854244CrossRefGoogle Scholar
  13. Marzari, F., Scholl, H. 2002‘On the Instability of Jupiter’s Trojans’Icarus159328338CrossRefGoogle Scholar
  14. Marzari, F., Tricarico, P., Scholl, H. 2003‘Stability of Jupiter Trojans investigated using frequency map analysis: the MATROS project’Mon. Not. R. Astron. Soc.34510911100CrossRefGoogle Scholar
  15. Milani, A. 1993‘The Trojan asteroid belt: proper elements, stability, chaos and families’Celest. Mech. Dyn. Astron.575994CrossRefGoogle Scholar
  16. Milani A., (1994), The Dynamics of the Trojan Asteroids. IAU Symp. 160: Asteroids, Comets, Meteors, 1993, pp. 159–174.Google Scholar
  17. Milani, A., Nobili, A.M. 1992‘An example of stable chaos in the Solar System’Nature357569571CrossRefGoogle Scholar
  18. Michtchenko, T.A., Beaugé, C., Roig, F. 2001‘Planetary migration and the effects of mean motion resonances on Jupiter’s Trojan asteroids’Astron. J.12234853491CrossRefGoogle Scholar
  19. Morais, M.H.M. 1999‘A secular theory for Trojan-type motion’Astron. Astrophys.350318326Google Scholar
  20. Morais, M.H.M. 2001‘Hamiltonian formulation of the secular theory for Trojan-type motion’Astron. Astrophys.369677689CrossRefGoogle Scholar
  21. Murray, N., Holman, M. 1997‘Diffusive chaos in the outer asteroid belt’Astron. J.11412461259CrossRefGoogle Scholar
  22. Namouni, F., Murray, C.D. 2000The effect of eccentricity and inclination on the motion near the Lagrangian points L4 and L5; CelestMech. Dyn. Astron.76131138CrossRefGoogle Scholar
  23. Nesvorný, D., Dones, L. 2002How long-lived are the hypothetical Trojan populations of Saturn, Uranus, and Neptune?’Icarus160271288CrossRefGoogle Scholar
  24. Nesvorný, D., Thomas, F., Ferraz-Mello, S., Morbidelli, A. 2002‘A perturbative treatment of the co-orbital motion’Celest. Mech. Dyn. Astron.82323361CrossRefGoogle Scholar
  25. Rabe, E. 1967‘Third-order stability of the long-period Trojan librations’Astron. J.721019CrossRefGoogle Scholar
  26. Robutel, P., Gabern, F., Jorba, A. 2005‘The observed Trojans and the global dynamics around the Lagrangian points of the Sun–Jupiter system’Celest. Mech. Dynam. Astron.925571Google Scholar
  27. Shevchenko, I.I. 1998‘On the recurrence and Lyapunov time scales of the motion near the chaos border’Phys. Lett. A2415360CrossRefGoogle Scholar
  28. Skokos, C., Dokoumetzidis, A. 2001‘Effective stability of the Trojan asteroids’Astron. Astrophys.367729736CrossRefGoogle Scholar
  29. Tsiganis, K., Dvorak, R., Pilat-Lohinger, E. 2000‘Thersites: a ‘jumping’ Trojan?’Astron. Astrophys.35410911100Google Scholar
  30. Tsiganis, K., Varvoglis, H., Hadjidemetriou, J.D. 2000‘Stable chaos in the 12:7 mean motion resonance and its relation to the stickiness effect’Icarus146240252CrossRefGoogle Scholar
  31. Tsiganis, K., Varvoglis, H., Hadjidemetriou, J.D. 2002‘Stable chaos in high-order Jovian resonances’Icarus155454474CrossRefGoogle Scholar
  32. Tsiganis, K., Varvoglis, H., Hadjidemetriou, J.D. 2002‘Stable chaos versus Kirkwood gaps in the asteroid belt: a comparative study of mean motion resonances’Icarus159284299CrossRefGoogle Scholar
  33. Wisdom, J., Holman, M. 1991‘Symplectic maps for the n-body problem’Astron. J.10215281538CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Kleomenis Tsiganis
    • 1
    Email author
  • Harry Varvoglis
    • 2
  • Rudolf Dvorak
    • 3
  1. 1.Observatoire de la Côte d’ AzurCNRSNice Cedex 4France
  2. 2.Department of PhysicsAristotle University of ThessalonikiThessalonikiGreece
  3. 3.Institut für AstronomieUniversity of ViennaViennaAustria

Personalised recommendations