Protein carbonylation in human bronchial epithelial cells exposed to cigarette smoke extract

  • Graziano ColomboEmail author
  • Maria Lisa Garavaglia
  • Emanuela Astori
  • Daniela Giustarini
  • Ranieri Rossi
  • Aldo Milzani
  • Isabella Dalle-Donne
Original Article


Cigarette smoke is a well-established exogenous risk factor containing toxic reactive molecules able to induce oxidative stress, which in turn contributes to smoking-related diseases, including cardiovascular, pulmonary, and oral cavity diseases. We investigated the effects of cigarette smoke extract on human bronchial epithelial cells. Cells were exposed to various concentrations (2.5–5–10–20%) of cigarette smoke extract for 1, 3, and 24 h. Carbonylation was assessed by 2,4-dinitrophenylhydrazine using both immunocytochemical and Western immunoblotting assays. Cigarette smoke induced increasing protein carbonylation in a concentration-dependent manner. The main carbonylated proteins were identified by means of two-dimensional electrophoresis coupled to MALDI-TOF mass spectrometry analysis and database search (redox proteomics). We demonstrated that exposure of bronchial cells to cigarette smoke extract induces carbonylation of a large number of proteins distributed throughout the cell. Proteins undergoing carbonylation are involved in primary metabolic processes, such as protein and lipid metabolism and metabolite and energy production as well as in fundamental cellular processes, such as cell cycle and chromosome segregation, thus confirming that reactive carbonyl species contained in cigarette smoke markedly alter cell homeostasis and functions.


Cigarette smoke extract (CSE) 2D-electrophoresis Human bronchial epithelial cells (16-HBE cells) Matrix-assisted laser desorption/ionization (MALDI) Protein carbonylation 



2D-gel electrophoresis


Keyhole limpet haemocyanin conjugate






Enhanced chemiluminescence


High molecular weight


Horseradish peroxidase


Matrix-assisted laser desorption/ionization time of flight


Mass spectrometry



This research was supported by the “Piano di Sostegno alla Ricerca 2016—Linea 2” (Università degli Studi di Milano).


  1. Adesina AM, Vallyathan V, McQuillen EN, Weaver SO, Craighead JE. Bronchiolar inflammation and fibrosis associated with smoking. Am Rev Respir Dis. 1991;143:144–9.CrossRefGoogle Scholar
  2. Afridi HI, Kazi TG, Talpur FN, Naher S, Brabazon D. Relationship between toxic metals exposure via cigarette smoking and rheumatoid arthritis. Clin Lab. 2014;60:1735–45.Google Scholar
  3. Aiassa V, Baronetti JL, Paez PL, Barnes AI, Albrecht C, Pellarin G, et al. Increased advanced oxidation of protein products and enhanced total antioxidant capacity in plasma by action of toxins of Escherichia coli STEC. Toxicol in Vitro. 2011;25:426–31.CrossRefGoogle Scholar
  4. Alberg AJ, Brock MV, Ford JG, Samet JM, Spivack SD. Epidemiology of lung cancer: diagnosis and management of lung cancer, 3rd ed: American college of chest physicians evidence-based clinical practice guidelines. Chest. 2013;143:e1S–e29S.CrossRefGoogle Scholar
  5. Armstrong AW, Harskamp CT, Dhillon JS, Armstrong EJ. Psoriasis and smoking: a systematic review and meta-analysis. Br J Dermatol. 2014;170:304–14.CrossRefGoogle Scholar
  6. Bachi A, Dalle-Donne I, Scaloni A. Redox proteomics: chemical principles, methodological approaches and biological/biomedical promises. Chem Rev. 2013;113:596–698.CrossRefGoogle Scholar
  7. Bazzini C, Rossetti V, Civello DA, Sassone F, Vezzoli V, Persani L, et al. Short- and long- term effects of cigarette smoke exposure on glutathione homeostasis in human bronchial epithelial cells. Cell Physiol Biochem. 2013;32:129–45.CrossRefGoogle Scholar
  8. Bersaas A, Arnoldussen YJ, Sjøberg M, Haugen A, Mollerup S. Epithelial-mesenchymal transition and FOXA genes during tobacco smoke carcinogen induced transformation of human bronchial epithelial cells. Toxicol in Vitro. 2016;35:55–65.CrossRefGoogle Scholar
  9. Berlett S, Stadtman ER. Protein oxidation in aging, disease and oxidative stress. J Biol Chem. 1997;272:20313–6.CrossRefGoogle Scholar
  10. Bodas M, Van Westphal C, Carpenter-Thompson R, Mohanty D, Vij N. Nicotine exposure induces bronchial epithelial cell apoptosis and senescence via ROS mediated autophagy-impairment. Free Radic Biol Med. 2016;97:441–53.CrossRefGoogle Scholar
  11. Bondì ML, Ferraro M, Di Vincenzo S, Gerbino S, Cavallaro G, Giammona G, et al. Effects in cigarette smoke stimulated bronchial epithelial cells of a corticosteroid entrapped into nanostructured lipid carriers. J Nanobiotechnology. 2014;29:12–46.Google Scholar
  12. Bose T. Bitter correlationship between autoimmune hepatitis and smoking. Med Hypotheses. 2015;84:118–21.CrossRefGoogle Scholar
  13. Brusselle GG, Joos GF, Bracke KR. New insights into the immunology of chronic obstructive pulmonary disease. Lancet. 2011;378:1015–26.CrossRefGoogle Scholar
  14. Bucchieri F, Marino Gammazza A, Pitruzzella A, Fucarino A, Farina F, Howarth P, et al. Cigarette smoke causes caspase-independent apoptosis of bronchial epithelial cells from asthmatic donors. PLoS One. 2015;10:1–15.CrossRefGoogle Scholar
  15. Castro JP, Ott C, Jung T, Grune T, Almeida H. Carbonylation of the cytoskeletal protein actin leads to aggregate formation. Free Radic Biol Med. 2012;53:916–25.CrossRefGoogle Scholar
  16. Castro JP, Jung T, Grune T, Almeida H. Actin carbonylation: from cell dysfunction to organism disorder. J Proteome. 2013;92:171–80.CrossRefGoogle Scholar
  17. Chang D, Sha Q, Zhang X, Liu P, Rong S, Han T, et al. The evaluation of the oxidative stress parameters in patients with primary angle-closure glaucoma. PLoS One. 2011;6:4–9.Google Scholar
  18. Colombo G, Rusconi F, Rubino T, Cattaneo A, Martegani E, Parolaro D, et al. Transcriptomic and proteomic analyses of mouse cerebellum reveals alterations in RasGRF1 expression following in vivo chronic treatment with delta 9-tetrahydrocannabinol. J Mol Neurosci. 2009;37:111–22.CrossRefGoogle Scholar
  19. Colombo G, Dalle-Donne I, Orioli M, Giustarini D, Rossi R, Clerici M, et al. Oxidative damage in human gingival fibroblasts exposed to cigarette smoke. Free Radic Biol Med. 2012;52:1584–96.CrossRefGoogle Scholar
  20. Colombo G, Clerici M, Giustarini D, Portinaro NM, Aldini G, Rossi R, et al. Pathophysiology of tobacco smoke exposure: recent insights from comparative and redox proteomics. Mass Spectrom Rev. 2014;33:183–218.CrossRefGoogle Scholar
  21. Colombo G, Clerici M, Garavaglia ME, Giustarini D, Rossi R, Milzani A, et al. A step-by-step protocol for assaying protein carbonylation in biological samples. J Chromatogr B Anal Technol Biomed Life Sci. 2016;1019:178–90.CrossRefGoogle Scholar
  22. Costenbader KH, Karlson EW. Cigarette smoking and autoimmune disease: what can we learn from epidemiology? Lupus. 2006;15:737–45.CrossRefGoogle Scholar
  23. Das A, Bhattacharya A, Chakrabarti G. Cigarette smoke extract induces disruption of structure and function of tubulin-microtubule in lung epithelium cells and in vitro. Chem Res Toxicol. 2009;22:446–59.CrossRefGoogle Scholar
  24. Dalle-Donne I, Rossi R, Giustarini D, Gagliano N, Lusini L, Milzani A, et al. Actin carbonylation: from a simple marker of protein oxidation to relevant signs of severe functional impairment. Free Radic Biol Med. 2001;31:1075–83.CrossRefGoogle Scholar
  25. Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R. Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta. 2003;329:23–38.CrossRefGoogle Scholar
  26. Dalle-Donne I, Aldini G, Carini M, Colombo R, Rossi R, Milzani A. Protein carbonylation, cellular dysfunction, and disease progression. J Cell Mol Med. 2006;10:389–406.CrossRefGoogle Scholar
  27. Dalle-Donne I, Colombo G, Gornati R, Garavaglia ML, Portinaro N, Giustarini D, et al. Protein carbonylation in human smokers and mammalian models of exposure to cigarette smoke: focus on redox proteomic studies. Antioxid Redox Signal. 2016;26:406–26.CrossRefGoogle Scholar
  28. Dietrich T, Bernimoulin JP, Glynn RJ. The effect of cigarette smoking on gingival bleeding. J Periodontol. 2004;75:16–22.CrossRefGoogle Scholar
  29. Dong R, Xie L, Zhao K, Zhang Q, Zhou M, He P. Cigarette smoke-induced lung inflammation in COPD mediated via LTB4/BLT1/SOCS1 pathway. Int J Chron Obstruct Pulmon Dis. 2015;11:31–41.Google Scholar
  30. Erales J, Coffino P. Ubiquitin-independent proteasomal degradation. Biochim Biophys Acta, Mol Cell Res. 2014;1843:216–21.CrossRefGoogle Scholar
  31. Feng J, Xie H, Meany DL, Thompson LV, Arriaga EA, Griffin TJ. Quantitative proteomic profiling of muscle type-dependent and age-dependent protein carbonylation in rat skeletal muscle mitochondria. J Gerontol A Biol Sci Med Sci. 2008;63:1137–52.CrossRefGoogle Scholar
  32. Gentile F, Pizzimenti S, Arcaro A, Pettazzoni P, Minelli R, D'Angelo D, et al. Exposure of HL-60 human leukaemic cells to 4-hydroxynonenal promotes the formation of adduct(s) with alpha-enolase devoid of plasminogen binding activity. Biochem J. 2009;422:285–94.CrossRefGoogle Scholar
  33. Gornati R, Colombo G, Clerici M, Rossi F, Gagliano N, Riva C, et al. Protein carbonylation in human endothelial cells exposed to cigarette smoke extract. Toxicol Lett. 2013;218:118–28.CrossRefGoogle Scholar
  34. Grune T, Reinheckel T, Davies KJ. Degradation of oxidized proteins in mammalian cells. FASEB J. 1997;11:526–34.CrossRefGoogle Scholar
  35. Hara H, Araya J, Takasaka N, Fujii S, Kojima J, Yumino Y, et al. Involvement of creatine kinase B in cigarette smoke-induced bronchial epithelial cell senescence. Am J Respir Cell Mol Biol. 2012;46:306–12.CrossRefGoogle Scholar
  36. Hogg JC, McDonough JE, Suzuki M. Small airway obstruction in COPD: new insights based on micro-CT imaging and MRI imaging. Chest. 2013;143:1436–43.CrossRefGoogle Scholar
  37. Höhn A, Jung T, Grune T. Pathophysiological importance of aggregated damaged proteins. Free Radic Biol Med. 2014;71:70–89.CrossRefGoogle Scholar
  38. Huang MF, Lin WL, Ma YC. A study of reactive oxygen species in mainstream of cigarette. Indoor Air. 2005;15:135–40.CrossRefGoogle Scholar
  39. Imamura K, Kokubu E, Kita D, Ota K, Ishihara K, Saito A. Cigarette smoke condensate modulates migration of human gingival epithelial cells and their interactions with Porphyromonas gingivalis. J Periodontal Res. 2015;50:411–21.CrossRefGoogle Scholar
  40. Jang J, Bruse S, Liu Y, Duffy V, Zhang C, Oyamada N, et al. Aldehyde dehydrogenase 3A1 protects airway epithelial cells from cigarette smoke-induced DNA damage and cytotoxicity. Free Radic Biol Med. 2014;68:80–6.CrossRefGoogle Scholar
  41. Jung T, Engels M, Kaiser B, Poppek D, Grune T. Intracellular distribution of oxidized proteins and proteasome in HT22 cells during oxidative stress. Free Radic Biol Med. 2006;40:1303–12.CrossRefGoogle Scholar
  42. Jung T, Höhn A, Grune T. The proteasome and the degradation of oxidized proteins: part II—protein oxidation and proteasomal degradation. Redox Biol. 2014;2:99–104.CrossRefGoogle Scholar
  43. Kästle M, Grune T. Proteins bearing oxidation-induced carbonyl groups are not preferentially ubiquitinated. Biochimie. 2011;96:1076–9.CrossRefGoogle Scholar
  44. Kästle M, Reeg S, Rogowska-Wrzesinska A, Grune T. Chaperones, but not oxidized proteins, are ubiquitinated after oxidative stress. Free Radic Biol Med. 2012;53:1468–77.CrossRefGoogle Scholar
  45. Kirkham P, Rahman I. Oxidative stress in asthma and COPD: antioxidants as a therapeutic strategy. Pharmacol Ther. 2006;111:476–94.CrossRefGoogle Scholar
  46. Kode A, Rajendrasozhan S, Caito S, Yang SR, Megson IL, Rahman I. Resveratrol induces glutathione synthesis by activation of Nrf2 and protects against cigarette smoke-mediated oxidative stress in human lung epithelial cells. Am J Phys Lung Cell Mol Phys. 2008;294:L478–88.Google Scholar
  47. Liu A, Wu J, Li A, Bi W, Liu T, Cao L, et al. The inhibitory mechanism of Cordyceps sinensis on cigarette smoke extract-induced senescence in human bronchial epithelial cells. Int J Chron Obstruct Pulmon Dis. 2016;11:1721–31.CrossRefGoogle Scholar
  48. Niaz K, Mabqool F, Khan F, Ismail Hassan F, Baeeri M, Navaei-Nigjeh M, et al. Molecular mechanisms of action of styrene toxicity in blood plasma and liver. Environ Toxicol. 2017;32(10):2256–66. Scholar
  49. Mak A, Tay SH. Environmental factors, toxicants and systemic lupus erythematosus. Int J Mol Sci. 2014;15:16043–56.CrossRefGoogle Scholar
  50. Martínez A, Portero-Otin M, Pamplona R, Ferrer I. Protein targets of oxidative damage in human neurodegenerative diseases with abnormal protein aggregates. Brain Pathol. 2010;20:281–97.CrossRefGoogle Scholar
  51. McDonough JE, Yuan R, Suzuki M, Seyednejad N, Elliot WM, Sanchez PG, et al. Small airway obstruction and emphysema in chronic obstructive pulmonary disease. N Engl J Med. 2011;365:1567–75.CrossRefGoogle Scholar
  52. Morris PB, Ference BA, Jahangir E, Feldman DN, Ryan JJ, Bahrami H, et al. Cardiovascular effects of exposure to cigarette smoke and electronic cigarettes: clinical perspectives from the Prevention of Cardiovascular Disease Section Leadership Council and Early Career Councils of the American College of Cardiology. J Am Coll Cardiol. 2015;66:1378–91.CrossRefGoogle Scholar
  53. Morse D, Rosas IO. Tobacco smoke-induced lung fibrosis and emphysema. Annu Rev Physiol. 2014;76:493–513.CrossRefGoogle Scholar
  54. Mortaz E, Folkerts G, Redegeld F. Mast cells and COPD. Pulm Pharmacol Ther. 2011;24:367–72.CrossRefGoogle Scholar
  55. Pace E, Ferraro M, Di Vincenzo S, Cipollina C, Gerbino S, Cigna D, et al. Comparative cytoprotective effects of carbocysteine and fluticasone propionate in cigarette smoke extract-stimulated bronchial epithelial cells. Cell Stress Chaperones. 2013;18:733–43.CrossRefGoogle Scholar
  56. Perricone C, Versini M, Ben-Ami D, Gertel S, Watad A, Segel MJ, et al. Smoke and autoimmunity: the fire behind the disease. Autoimmun Rev. 2016;15:354–74.CrossRefGoogle Scholar
  57. Piao MJ, Ahn MJ, Kang KA, Ryu YS, Hyun YJ, Shilnikova K, et al. Particulate matter 2.5 damages skin cells by inducing oxidative stress, subcellular organelle dysfunction, and apoptosis. Arch Toxicol. 2018;92(6):2077–91. Scholar
  58. Pizzimenti S, Ciamporcero E, Daga M, Pettazzoni P, Arcaro A, Cetrangolo G, et al. Interaction of aldehydes derived from lipid peroxidation and membrane proteins. Front Physiol. 2013;4:242.CrossRefGoogle Scholar
  59. Rahman I. Oxidative stress in pathogenesis of chronic obstructive pulmonary disease: cellular and molecular mechanisms. Cell Biochem Biophys. 2005;43:167–88.CrossRefGoogle Scholar
  60. Reed TT, Pierce WM, Markesbery WR, Butterfield DA. Proteomic identification of HNE-bound proteins in early Alzheimer disease: insights into the role of lipid peroxidation in the progression of AD. Brain Res. 2009;1274:66–76.CrossRefGoogle Scholar
  61. Reeg S, Jung T, Castro JP, Davies KJA, Henze A, Grune T. The molecular chaperone Hsp70 promotes the proteolytic removal of oxidatively damaged proteins by the proteasome. Free Radic Biol Med. 2016;99:153–66.CrossRefGoogle Scholar
  62. Ruskovska T, Bernlohr DA. Oxidative stress and protein carbonylation in adipose tissue - implications for insulin resistance and diabetes mellitus. J Proteome. 2013;92:323–34.CrossRefGoogle Scholar
  63. Saetta M, Turato G, Baraldo S, Zanin A, Braccioni F, Mapp CE, et al. Goblet cell hyperplasia and epithelial inflammation in peripheral airways of smokers with both symptoms of chronic bronchitis and chronic airflow limitation. Am J Respir Crit Care Med. 2000;161:1016–21.CrossRefGoogle Scholar
  64. Semlali A, Chakir J, Goulet JP, Chmielewski W, Rouabhia M. Whole cigarette smoke promotes human gingival epithelial cell apoptosis and inhibits cell repair processes. J Periodontal Res. 2011;46:533–41.Google Scholar
  65. Sethi S, Muscarella K, Evans N, Klingman KL, Grant BJB, Murphy TF. Airway inflammation and etiology of acute exacerbations of chronic bronchitis. Chest. 2000;118:1557–65.CrossRefGoogle Scholar
  66. Shekhar S, Pernier J, Carlier MF. Regulators of actin filament barbed ends at a glance. J Cell Sci. 2016;129:1085–91.CrossRefGoogle Scholar
  67. Shringarpure R, Grune T, Mehlhase J, Davies KJ. Ubiquitin conjugation is not required for the degradation of oxidized proteins by proteasome. J Biol Chem. 2003;278:311–8.CrossRefGoogle Scholar
  68. Su Y, Cao W, Han Z, Block ER. Cigarette smoke extract inhibits angiogenesis of pulmonary artery endothelial cells: the role of calpain. Am J Phys Lung Cell Mol Phys. 2004;287:L794–800.Google Scholar
  69. Sultana R, Perluigi M, Butterfield DA. Lipid peroxidation triggers neurodegeneration: a redox proteomics view into the Alzheimer disease brain. Free Radic Biol Med. 2013;62:157–69.CrossRefGoogle Scholar
  70. Talbot J, Peres RS, Pinto LG, Oliveira RDR, Lima KA, Donate PB, et al. Smoking-induced aggravation of experimental arthritis is dependent of aryl hydrocarbon receptor activation in Th17 cells. Arthritis Res Ther. 2018;20:119.CrossRefGoogle Scholar
  71. Tesfaigzi Y. Roles of apoptosis in airway epithelia. Am J Respir Cell Mol Biol. 2006;34:537–47.CrossRefGoogle Scholar
  72. Thorley AJ, Tetley TD. Pulmonary epithelium, cigarette smoke, and chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2007;2:409–28.Google Scholar
  73. Tsuji T, Aoshiba K, Nagai A. Cigarette smoke induces senescence in alveolar epithelial cells. Am J Respir Cell Mol Biol. 2004;31:643–9.CrossRefGoogle Scholar
  74. van Rijt SH, Keller IE, John G, Kohse K, Yildirim AÖ, Eickelberg O, et al. Acute cigarette smoke exposure impairs proteasome function in the lung. Am J Phys Lung Cell Mol Phys. 2012;303:L814–23.Google Scholar
  75. Wong J, Magun B, Wood L. Lung inflammation caused by inhaled toxicants: a review. Int J Chron Obstruct Pulmon Dis. 2016;11:1391–401.CrossRefGoogle Scholar
  76. Wu D, Yuan Y, Lin Z, Lai T, Chen M, Li W, et al. Cigarette smoke extract induces placental growth factor release from human bronchial epithelial cells via ROS/MAPK (ERK-1/2)/Egr-1 axis. Int J Chron Obstruct Pulmon Dis. 2016;11:3031–42.CrossRefGoogle Scholar
  77. Xueshibojie L, Duo Y, Tiejun W. Taraxasterol inhibits cigarette smoke-induced lung inflammation by inhibiting reactive oxygen species-induced TLR4 trafficking to lipid rafts. Eur J Pharmacol. 2016;789:301–7.CrossRefGoogle Scholar
  78. Yadav P, Ellinghaus D, Rémy G, Freitag-Wolf S, Cesaro A, Degenhardt F, et al. Genetic factors interact with tobacco smoke to modify risk for inflammatory bowel disease in humans and mice. Gastroenterology. 2017;153:550–65.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Graziano Colombo
    • 1
    Email author
  • Maria Lisa Garavaglia
    • 1
  • Emanuela Astori
    • 1
  • Daniela Giustarini
    • 2
  • Ranieri Rossi
    • 2
  • Aldo Milzani
    • 1
  • Isabella Dalle-Donne
    • 1
  1. 1.Department of BiosciencesUniversità degli Studi di MilanoMilanItaly
  2. 2.Department of Biotechnology, Chemistry and PharmacyUniversity of SienaSienaItaly

Personalised recommendations