Advertisement

Olive leaf extract counteracts epithelial to mesenchymal transition process induced by peritoneal dialysis, through the inhibition of TGFβ1 signaling

  • S. Lupinacci
  • Anna Perri
  • G. Toteda
  • D. Vizza
  • F. Puoci
  • O. I. Parisi
  • F. Giordano
  • D. Lofaro
  • A. La Russa
  • M. Bonofiglio
  • R. Bonofiglio
Original Article
  • 133 Downloads

Abstract

The mesothelial cells (MCs) play an important role in the morpho-functional alterations of the peritoneal membrane (PM) undergoing peritoneal dialysis (PD). MCs, through the epithelial-mesenchymal transition process (EMT), progressively acquire a myofibroblast-like phenotype, promoting peritoneal fibrosis (PF) and failure of peritoneal membrane function. Transforming growth factor β1 (TGFβ1), through canonical and non-canonical pathways, promotes the epithelial-mesenchymal transition (EMT) process leading to PF. To investigate the therapeutic potential of an olive leaf extract (OLE) on preserving peritoneal membrane function, we evaluated the effect of OLE on the TGFβ1-induced EMT in mesothelial cells, Met5A, and elucidated the underlying molecular mechanisms. As assessed by changes in the expression of epithelial, mesenchymal, and fibrotic cell markers (such as E-cadherin, N-cadherin, α-SMA, fibronectin, vimentin), levels of matrix metalloproteinases (MMP2 and MMP9), and cell migration, OLE inhibited the TGFβ1-induced EMT. Importantly, the beneficial effect of OLE was mediated by reduction of the TGFβ1-induced activation of Smad2/3 signaling and the mitigation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) phosphorylation. Smad/non-Smad signaling pathways, activated by TGFβ1, both reduce expression of epithelial marker E-cadherin which has a crucial role in EMT initiation. Interestingly, we observed that in presence of OLE activity of the E-cadherin, promoter was increased and concomitantly OLE reduced the nuclear content of its co-repressor SNAIL. Our results suggest the potential therapeutic of OLE to counteract fibrotic process in peritoneal dialysis patients.

Keywords

E-cadherin promoter EMT Olive leaves Peritoneal dialysis Polyphenols 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aguilera A, Aroeira LS, Ramirez-Huesca M, Perez-Lozano ML, Cirugeda A, Bajo MA, et al. Effects of rapamycin on the epithelial-to-mesenchymal transition of human peritoneal mesothelial cells. Int J Artif Organs. 2005;28:164–9.CrossRefPubMedGoogle Scholar
  2. Boyer B, Valles AM, Edme N. Induction and regulation of epithelial-mesenchymal transitions. Biochem Pharmacol. 2000;60:1091–9.CrossRefPubMedGoogle Scholar
  3. Chang TI, Kang HY, Kim KS, Lee SH, Nam BY, Paeng J, et al. The effect of statin on epithelial-mesenchymal transition in peritoneal mesothelial cells. PLoS One. 2014;9:e109628.CrossRefPubMedPubMedCentralGoogle Scholar
  4. De Iongh RU, Wederell E, Lovicu FJ, Mcavoy JW. Transforming growth factor-beta-induced epithelial-mesenchymal transition in the lens: a model for cataract formation. Cells Tissues Organs. 2005;179:43–55.CrossRefPubMedGoogle Scholar
  5. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 2003;425:577–84.CrossRefPubMedGoogle Scholar
  6. Devuyst O, Margetts PJ, Topley N. The pathophysiology of the peritoneal membrane. J Am Soc Nephrol. 2010;21:1077–85.CrossRefPubMedGoogle Scholar
  7. Ditsawanon P, Aramwit P. Preserving the peritoneal membrane in long-term peritoneal dialysis patients. J Clin Pharm Ther. 2015;40:508–16.CrossRefPubMedGoogle Scholar
  8. El SN, Karakaya S. Olive tree (Olea europaea) leaves: potential beneficial effects on human health. Nutr Rev. 2009;67:632–8.CrossRefPubMedGoogle Scholar
  9. Fang CC, Huang JW, Shyu RS, Yen CJ, Shiao CH, Chiang CK, et al. Fibrin-induced epithelial-to-mesenchymal transition of peritoneal mesothelial cells as a mechanism of peritoneal fibrosis: effects of pentoxifylline. PLoS One. 2012;7:e44765.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Feng J, Song D, Jiang S, Yang X, Ding T, Zhang H, et al. Quercetin restrains TGF-beta1-induced epithelial-mesenchymal transition by inhibiting Twist1 and regulating E-cadherin expression. Biochem Biophys Res Commun. 2018;498:132–8.CrossRefPubMedGoogle Scholar
  11. Feng XH, Derynck R. Specificity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol. 2005;21:659–93.CrossRefPubMedGoogle Scholar
  12. Gokal R. Peritoneal dialysis in the 21st century: an analysis of current problems and future developments. J Am Soc Nephrol. 2002;13(Suppl 1):S104–16.PubMedGoogle Scholar
  13. Gui T, Sun Y, Shimokado A, Muragaki Y. The roles of mitogen-activated protein kinase pathways in TGF-beta-induced epithelial-mesenchymal transition. J Signal Transduct. 2012;2012:289243.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hashemi P, Raeisi F, Ghiasvand AR, Rahimi A. Reversed-phase dispersive liquid-liquid microextraction with central composite design optimization for preconcentration and HPLC determination of oleuropein. Talanta. 2010;80:1926–31.CrossRefPubMedGoogle Scholar
  15. Herrick SE, Mutsaers SE. Mesothelial progenitor cells and their potential in tissue engineering. Int J Biochem Cell Biol. 2004;36:621–42.CrossRefPubMedGoogle Scholar
  16. Jang YH, Shin HS, Sun Choi H, Ryu ES, Jin Kim M, Ki Min S, et al. Effects of dexamethasone on the TGF-beta1-induced epithelial-to-mesenchymal transition in human peritoneal mesothelial cells. Lab Investig. 2013;93:194–206.CrossRefPubMedGoogle Scholar
  17. Kitamura M, Nishino T, Obata Y, Furusu A, Hishikawa Y, Koji T, et al. Epigallocatechin gallate suppresses peritoneal fibrosis in mice. Chem Biol Interact. 2012;195:95–104.CrossRefPubMedGoogle Scholar
  18. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178–96.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Lee HB, Ha H. Mechanisms of epithelial-mesenchymal transition of peritoneal mesothelial cells during peritoneal dialysis. J Korean Med Sci. 2007;22:943–5.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Liu Q, Zhang Y, Mao H, Chen W, Luo N, Zhou Q, et al. A crosstalk between the Smad and JNK signaling in the TGF-beta-induced epithelial-mesenchymal transition in rat peritoneal mesothelial cells. PLoS One. 2012;7:e32009.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Loureiro J, Aguilera A, Selgas R, Sandoval P, Albar-Vizcaino P, Perez-Lozano ML, et al. Blocking TGF-beta1 protects the peritoneal membrane from dialysate-induced damage. J Am Soc Nephrol. 2011;22:1682–95.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Loureiro J, Sandoval P, Del Peso G, Gonzalez-Mateo G, Fernandez-Millara V, Santamaria B, et al. Tamoxifen ameliorates peritoneal membrane damage by blocking mesothelial to mesenchymal transition in peritoneal dialysis. PLoS One. 2013;8:e61165.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lupinacci S, Toteda G, Vizza D, Perri A, Benincasa C, Mollica A, et al. Active compounds extracted from extra virgin olive oil counteract mesothelial-to-mesenchymal transition of peritoneal mesothelium cells exposed to conventional peritoneal dialysate: in vitro and in vivo evidences. J Nephrol. 2017;30:841–50.CrossRefPubMedGoogle Scholar
  24. Margetts PJ, Bonniaud P, Liu L, Hoff CM, Holmes CJ, West-Mays JA, et al. Transient overexpression of TGF-{beta}1 induces epithelial mesenchymal transition in the rodent peritoneum. J Am Soc Nephrol. 2005a;16:425–36.CrossRefPubMedGoogle Scholar
  25. Margetts PJ, Kolb M, Galt T, Hoff CM, Shockley TR, Gauldie J. Gene transfer of transforming growth factor-beta1 to the rat peritoneum: effects on membrane function. J Am Soc Nephrol. 2001;12:2029–39.PubMedGoogle Scholar
  26. Margetts PJ, Oh KH, Kolb M. Transforming growth factor-beta: importance in long-term peritoneal membrane changes. Perit Dial Int. 2005b;25(Suppl 3):S15–7.PubMedGoogle Scholar
  27. Massague J. TGFbeta signalling in context. Nat Rev Mol Cell Biol. 2012;13:616–30.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Mostafa-Hedeab G, Sati LM, Elnaggar HM, Elgatlawey ZO, Eltwab AA, Elsaghayer WA, et al. Ameliorating effect of olive leaf extract on cyclosporine-induced nephrotoxicity in rats. Iran J Kidney Dis. 2015;9:361–8.PubMedGoogle Scholar
  29. Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med Cell Longev. 2009;2:270–8.CrossRefGoogle Scholar
  30. Patel P, Sekiguchi Y, Oh KH, Patterson SE, Kolb MR, Margetts PJ. Smad3-dependent and -independent pathways are involved in peritoneal membrane injury. Kidney Int. 2010;77:319–28.CrossRefPubMedGoogle Scholar
  31. Pletinck A, Vanholder R, Veys N, Van Biesen W. Protecting the peritoneal membrane: factors beyond peritoneal dialysis solutions. Nat Rev Nephrol. 2012;8:542–50.CrossRefPubMedGoogle Scholar
  32. Selgas R, Bajo A, Jimenez-Heffernan JA, Sanchez-Tomero JA, Del Peso G, Aguilera A, et al. Epithelial-to-mesenchymal transition of the mesothelial cell--its role in the response of the peritoneum to dialysis. Nephrol Dial Transplant. 2006;21(Suppl 2):ii2–7.CrossRefPubMedGoogle Scholar
  33. Strippoli R, Benedicto I, Perez Lozano ML, Cerezo A, Lopez-Cabrera M, Del Pozo MA. Epithelial-to-mesenchymal transition of peritoneal mesothelial cells is regulated by an ERK/NF-kappaB/Snail1 pathway. Dis Model Mech. 2008;1:264–74.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Tomino Y. Mechanisms and interventions in peritoneal fibrosis. Clin Exp Nephrol. 2012;16:109–14.CrossRefPubMedGoogle Scholar
  35. Tsai CN, Tsai CL, Tse KP, Chang HY, Chang YS. The Epstein-Barr virus oncogene product, latent membrane protein 1, induces the downregulation of E-cadherin gene expression via activation of DNA methyltransferases. Proc Natl Acad Sci U S A. 2002;99:10084–9.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Vazquez-Martin A, Fernandez-Arroyo S, Cufi S, Oliveras-Ferraros C, Lozano-Sanchez J, Vellon L, et al. Phenolic secoiridoids in extra virgin olive oil impede fibrogenic and oncogenic epithelial-to-mesenchymal transition: extra virgin olive oil as a source of novel antiaging phytochemicals. Rejuvenation Res. 2012;15:3–21.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Vizza D, Perri A, Lofaro D, Toteda G, Lupinacci S, Leone F, et al. Exposure to nerve growth factor worsens nephrotoxic effect induced by cyclosporine a in HK-2 cells. PLoS One. 2013;8:e80113.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Vogel P, Kasper Machado I, Garavaglia J, Zani VT, De Souza D. Morelo dal Bosco S.Polyphenols benefits of olive leaf (Olea europaea L.) to human health. Nutr Hosp. 2014;31:1427–33.PubMedGoogle Scholar
  39. Xie L, Law BK, Chytil AM, Brown KA, Aakre ME, Moses HL. Activation of the Erk pathway is required for TGF-beta1-induced EMT in vitro. Neoplasia. 2004;6:603–10.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Xu W, Shao X, Tian L, Gu L, Zhang M, Wang Q, et al. Astragaloside IV ameliorates renal fibrosis via the inhibition of mitogen-activated protein kinases and antiapoptosis in vivo and in vitro. J Pharmacol Exp Ther. 2014;350:552–62.CrossRefPubMedGoogle Scholar
  41. Yanez-Mo M, Lara-Pezzi E, Selgas R, Ramirez-Huesca M, Dominguez-Jimenez C, Jimenez-Heffernan JA, et al. Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N Engl J Med. 2003;348:403–13.CrossRefPubMedGoogle Scholar
  42. Yang AH, Chen JY, Lin JK. Myofibroblastic conversion of mesothelial cells. Kidney Int. 2003;63:1530–9.CrossRefPubMedGoogle Scholar
  43. Yang J, Liu Y. Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis. Am J Pathol. 2001;159:1465–75.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Ye J-Z, Wang C-Z, Chen H-X, Zhou H (2011) Variation rule of Hydroxytyrosol content in olive leaves. Chemistry and Industry of Forest Products 2.Google Scholar
  45. Yoshimura A, Wakabayashi Y, Mori T. Cellular and molecular basis for the regulation of inflammation by TGF-beta. J Biochem. 2010;147:781–92.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Yu MA, Shin KS, Kim JH, Kim YI, Chung SS, Park SH, et al. HGF and BMP-7 ameliorate high glucose-induced epithelial-to-mesenchymal transition of peritoneal mesothelium. J Am Soc Nephrol. 2009;20:567–81.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Zhang L, Li Z, He W, Xu L, Wang J, Shi J, et al. Effects of Astragaloside IV against the TGF-beta1-induced epithelial-to-mesenchymal transition in peritoneal mesothelial cells by promoting Smad 7 expression. Cell Physiol Biochem. 2015;37:43–54.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • S. Lupinacci
    • 1
  • Anna Perri
    • 1
  • G. Toteda
    • 1
  • D. Vizza
    • 1
  • F. Puoci
    • 2
  • O. I. Parisi
    • 2
  • F. Giordano
    • 2
  • D. Lofaro
    • 1
  • A. La Russa
    • 1
  • M. Bonofiglio
    • 1
  • R. Bonofiglio
    • 1
  1. 1.“Kidney and Transplantation” Research Center, Department of Nephrology, Dialysis and TransplantationAnnunziata HospitalCosenzaItaly
  2. 2.Department of Pharmacy, Health and Nutritional SciencesUniversity of CalabriaRendeItaly

Personalised recommendations