Advertisement

Cell Biology and Toxicology

, Volume 32, Issue 2, pp 83–101 | Cite as

The impact of autophagy on cell death modalities in CRL-5876 lung adenocarcinoma cells after their exposure to γ-rays and/or erlotinib

  • Otilija Keta
  • Tanja Bulat
  • Igor Golić
  • Sebastien Incerti
  • Aleksandra Korać
  • Ivan Petrović
  • Aleksandra Ristić-Fira
Original Article

Abstract

In most patients with lung cancer radiation treatment is used either as single agent or in combination with radiosensitizing drugs. However, the mechanisms underlying combined therapy and its impact on different modes of cell death have not yet been fully elucidated. We aimed to examine effects of single and combined treatments with γ-rays and erlotinib on radioresistant CRL-5876 human lung adenocarcinoma cells with particular emphasis on cell death. CRL-5876 cells were treated with γ-rays and/or erlotinib and changes in cell cycle, DNA repair dynamics, ultrastructure, nuclear morphology and protein expression were monitored at different time points. To reveal the relationship between types of cell death that arise after these treatments, autophagy was blocked with chloroquine. We found that higher dose of γ-rays causes G2/M arrest while adding of erlotinib to this treatment decreases the number of cells in S phase. Impact of erlotinib on kinetics of disappearance of irradiation-induced DNA double strand breaks is reflected in the increase of residual γ-H2AX foci after 24 h. γ-rays provoke cytoprotective autophagy which precedes development of senescence. Erlotinib predominantly induces apoptosis and enlarges the number of apoptotic cells in the irradiated CRL-5876 cells. Chloroquine improved cytotoxicity induced by radiation and erlotinib, increased apoptosis and decreased senescence in the CRL-5876 cells. The results obtained on CRL-5876 cells indicate significant radiosensitizing effect of erlotinib and suggest that chloroquine in the combination with the above treatments may have an additional antitumor effect in lung adenocarcinoma.

Keywords

Apoptosis Autophagy Erlotinib γ-rays Lung adenocarcinoma Senescence 

Notes

Acknowledgments

This work was supported by the Ministry of Education, Science and Technological Development of Serbia (grants 173046 and 171019).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. Abbas T, Dutta A. p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer. 2009;9:400–14.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Abend M. Reasons to reconsider the significance of apoptosis for cancer therapy. Int J Radiat Biol. 2003;79:927–41.CrossRefPubMedGoogle Scholar
  3. Amaravadi RK, Thompson CB. The roles of therapy-induced autophagy and necrosis in cancer treatment. Clin Cancer Res. 2007;13:7271–79.CrossRefPubMedGoogle Scholar
  4. Anderson D, Andrais B, Mirzayans R, Siegbahn EA, Fallone BG, Warkentin B. Comparison of two methods for measuring γ-H2AX nuclear fluorescence as a marker of DNA damage in cultured human cells: applications for microbeam radiation therapy. JINST. 2013;8:C06008. doi: 10.1088/1748-0221/8/06/C06008.CrossRefGoogle Scholar
  5. Axelrod M, Gordon VL, Conaway M, Tarcsafalvi A, Neitzke DJ, Gioeli D, et al. Combinatorial drug screening identifies compensatory pathway interactions and adaptive resistance mechanisms. Oncotarget. 2013;4:622–35.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Balcer-Kubiczek EK. Apoptosis in radiation therapy: a double-edged sword. Exp Oncol. 2012;34:277–85.PubMedGoogle Scholar
  7. Banáth JP, Klokov D, MacPhail SH, Banuelos CA, Olive PL. Residual gamma H2AX foci as an indication of lethal DNA lesions. BMC Cancer. 2010;10:4.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Baskar R, Lee KA, Yeo R, Yeoh KW. Cancer and radiation therapy: current advances and future directions. Int J Med Sci. 2012;9:193–99.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Benbrook DM, Long A. Integration of autophagy, proteasomal degradation, unfolded protein response and apoptosis. Exp Oncol. 2012;34:286–97.PubMedGoogle Scholar
  10. Bӧcker W, Iliakis G. Computational Methods for analysis of foci: validation for radiation-induced gamma-H2AX foci in human cells. Radiat Res. 2006;165:113–24.CrossRefGoogle Scholar
  11. Brown JM, Attardi LD. The role of apoptosis in cancer development and treatment response. Nat Rev Cancer. 2005;5:231–37.PubMedGoogle Scholar
  12. Cerella C, Teiten MH, Radogna F, Dicato M, Diederich M. From nature to bedside: pro-survival and cell death mechanisms as therapeutic targets in cancer treatment. Biotechnol Adv. 2014;32:1111–22.CrossRefPubMedGoogle Scholar
  13. Chen N, Karantza V. Autophagy as a therapeutic target in cancer. Cancer Biol Ther. 2011;11:157–68.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Choi KS. Autophagy and cancer. Exp Mol Med. 2012;44:109–20.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cufi S, Vazquez-Martin A, Oliveras-Ferraros C, Corominas-Faja B, Cuyàs E, Lopez-Bonet E, et al. The anti-malarial chloroquine overcomes primary resistance and restores sensitivity to trastuzumab in HER2-positive breast cancer. Sci Rep. 2013;3:2469.PubMedPubMedCentralGoogle Scholar
  16. Debacq-Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O. Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc. 2009;4:1798–806.CrossRefPubMedGoogle Scholar
  17. Fan C, Wang W, Zhao B, Zhang S, Miao J. Chloroquine inhibits cell growth and induces cell death in A549 lung cancer cells. Bioorg Med Chem. 2006;14:3218–22.CrossRefPubMedGoogle Scholar
  18. Fernandez-Cuesta L, Plenker D, Osada H, Sun R, Menon R, Leenders F, et al. CD74-NRG1 fusions in lung adenocarcinoma. Cancer Discov. 2014;4:415–22.CrossRefPubMedGoogle Scholar
  19. Firat E, Gaedicke S, Tsurumi C, Esser N, Weyerbrock A, Niedermann G. Delayed cell death associated with mitotic catastrophe in γ-irradiated stem-like glioma cells. Radiat Oncol. 2011;6:71.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gewirtz DA. Autophagy and senescence in cancer therapy. J Cell Physiol. 2014;229:6–9.PubMedGoogle Scholar
  21. Goehe RW, Di X, Sharma K, Bristol ML, Henderson SC, Valerie K, et al. The autophagy-senescence connection in chemotherapy: must tumor cells (self) eat before they sleep? J Pharmacol Exp Ther. 2012;343:763–78.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gong A, Ye S, Xiong E, Guo W, Zhang Y, Peng W, et al. Autophagy contributes to ING4-induced glioma cell death. Exp Cell Res. 2013;319:1714–23.CrossRefPubMedGoogle Scholar
  23. Gorski SM, Ries J, Lum JJ. Targeting autophagy: the Achilles’ heel of cancer. Autophagy. 2012;8:1279–80.CrossRefPubMedGoogle Scholar
  24. Gozuacik D, Kimchi A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene. 2004;23(16):2891–906.CrossRefPubMedGoogle Scholar
  25. Jiang H, Cheng D, Liu W, Peng J, Feng J. Protein kinase C inhibits autophagy and phosphorylates LC3. Biochem Biophys Res Commun. 2010;395:471–76.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Joiner M, van der Kogel A. Basic clinical radiobiology. 4th ed. London, UK: Hodder Arnold; 2009.Google Scholar
  27. Keta O, Bulat T, Koricanac L, Zakula J, Cuttone G, Privitera G, et al. Radiosensitization of non-small cell lung carcinoma by EGFR inhibition. Nucl Tecnol Radiat. 2014;29:233–41.CrossRefGoogle Scholar
  28. Kim KW, Moretti L, Mitchell LR, Jung DK, Lu B. Endoplasmic reticulum stress mediates radiation-induced autophagy by perk-eIF2alpha in caspase-3/7-deficient cells. Oncogene. 2010;29:3241–51.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kondratskyi A, Yassine M, Slomianny C, Kondratska K, Gordienko D, Dewailly E, et al. Identification of ML-9 as a lysosomotropic agent targeting autophagy and cell death. Cell Death Dis. 2014;5:e1193.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kumar R, Chaudhary K, Gupta S, Singh H, Kumar S, Gautam A, et al. CancerDR: cancer drug resistance database. Sci Rep. 2013;3:1445.PubMedPubMedCentralGoogle Scholar
  31. Kurz DJ, Decary S, Hong Y, Erusalimsky JD. Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci. 2000;113:3613–22.PubMedGoogle Scholar
  32. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–85.CrossRefPubMedGoogle Scholar
  33. Larsen JE, Cascone T, Gerber DE, Heymach JV, Minna JD. Targeted therapies for lung cancer: clinical experience and novel agents. Cancer J. 2011;17:512–27.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lee JS, Kwon OY, Choi HS, Hong HP, Ko YG. Application of the Sequential Organ Failure Assessment (SOFA) score in patients with advanced cancer who present to the ED. Am J Emerg Med. 2012;30:362–66.CrossRefPubMedGoogle Scholar
  35. Li YY, Lam SK, Mak JC, Zheng CY, Ho JC. Erlotinib-induced autophagy in epidermal growth factor receptor mutated non-small cell lung cancer. Lung Cancer. 2013;81:354–61.CrossRefPubMedGoogle Scholar
  36. Liang B, Kong D, Liu Y, Liang N, He M, Ma S, et al. Autophagy inhibition plays the synergetic killing roles with radiation in the multi-drug resistant SKVCR ovarian cancer cells. Radiat Oncol. 2012;7:213.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–75.PubMedGoogle Scholar
  38. Mancias JD, Kimmelman AC. Targeting autophagy addiction in cancer. Oncotarget. 2011;2:1302–06.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Maycotte P, Aryal S, Cummings CT, Thorburn J, Morgan MJ, Thorburn A. Chloroquine sensitizes breast cancer cells to chemotherapy independent of autophagy. Autophagy. 2012;8:200–12.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Mehta VK. Radiotherapy and erlotinib combined: review of the preclinical and clinical evidence. Front Oncol. 2012;2:31.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Murray D, Mirzayans R. Role of therapy-induced cellular senescence in tumor cells and its modification in radiotherapy: the good, the bad and the ugly. J Nucl Med Radiat Ther. 2013;S6:018.Google Scholar
  42. Muschel RJ, Soto DE, McKenna WG, Bernhard EJ. Radiosensitization and apoptosis. Oncogene. 1998;17:3359–63.CrossRefPubMedGoogle Scholar
  43. Odell ID, Cook D. Immunofluorescence techniques. J Investig Dermatol. 2013;133:e4.CrossRefPubMedGoogle Scholar
  44. Palumbo S, Comincini S. Autophagy and ionizing radiation in tumors: the “survive or not survive” dilemma. J Cell Physiol. 2013;228:1–8.CrossRefPubMedGoogle Scholar
  45. Petrovic I, Ristic-Fira A, Todorovic D, Valastro L, Cirrone P, Cuttone G. Radiobiological analysis of human melanoma cells on the 62 meV CATANA proton beam. Int J Radiat Biol. 2006;82:251–65.CrossRefPubMedGoogle Scholar
  46. Petrovic I, Ristic-Fira A, Todorovic D, Koricanac L, Valastro L, Cirrone P, et al. Response of a radioresistant human melanoma cell line along the proton spread-out Bragg peak. Int J Radiat Biol. 2010;86:742–51.CrossRefPubMedGoogle Scholar
  47. Prokakis C, Koletsis EN, Apostolakis E, Chatzimichalis A, Dougenis D. Preoperative chemotherapy in early-stage (stage IB-IIIA) resectable non small cell lung cancer. Is it justified? J BUON. 2008;13:161–68.PubMedGoogle Scholar
  48. Provencio M, Isla D, Sánchez A, Cantos B. Inoperable stage III non-small cell lung cancer: current treatment and role of vinorelbine. J Thorac Dis. 2011;3:197–204.PubMedPubMedCentralGoogle Scholar
  49. Qu YY, Hu SL, Xu XY, Wang RZ, Yu HY, Xu JY, et al. Nimotuzumab enhances the radiosensitivity of cancer cells in vitro by inhibiting radiation-induced DNA damage repair. PLoS One. 2013;8:e70727.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Rao B, Lain S, Thompson AM. p53-Based cyclotherapy: exploiting the “guardian of the genome” to protect normal cells from cytotoxic therapy. Br J Cancer. 2013;109:2954–58.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Ricci MS, Zong WX. Chemotherapeutic approaches for targeting cell death pathways. Oncologist. 2006;11:342–57.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Sakuma Y, Matsukuma S, Nakamura Y, Yoshihara M, Koizume S, Sekiguchi H, et al. Enhanced autophagy is required for survival in EGFR-independent EGFR-mutant lung adenocarcinoma cells. Lab Investig. 2013;93:1137–46.CrossRefPubMedGoogle Scholar
  53. Salakou S, Kardamakis D, Tsamandas AC, Zolota V, Apostolakis E, Tzelepi V, et al. Increased Bax/Bcl-2 ratio up-regulates caspase-3 and increases apoptosis in the thymus of patients with myasthenia gravis. In Vivo. 2007;21:123–32.PubMedGoogle Scholar
  54. Schonthal AH. Endoplasmic reticulum stress: its role in disease and novel prospects for therapy. Scientifica (Cairo). 2012;2012:857516.Google Scholar
  55. Silva MT. Secondary necrosis: the natural outcome of the complete apoptotic program. FEBS Lett. 2010;584:4491–99.CrossRefPubMedGoogle Scholar
  56. Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, et al. New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst. 1990;82:1107–12.CrossRefPubMedGoogle Scholar
  57. Solomon VR, Lee H. Chloroquine and its analogs: a new promise of an old drug for effective and safe cancer therapies. Eur J Pharmacol. 2009;625:220–33.CrossRefPubMedGoogle Scholar
  58. Tang J, Salama R, Gadgeel SM, Sarkar FH, Ahmad A. Erlotinib resistance in lung cancer: current progress and future perspectives. Front Pharmacol. 2013;4:5.CrossRefGoogle Scholar
  59. Tasdemir E, Galluzzi L, Maiuri MC, Criollo A, Vitale I, Hangen E, et al. Methods for assessing autophagy and autophagic cell death. Methods Mol Biol. 2008;445:29–76.CrossRefPubMedGoogle Scholar
  60. Wang M, Morsbach F, Sander D, Gheorghiu L, Nanda A, Benes C, et al. EGF receptor inhibition radiosensitizes NSCLC cells by inducing senescence in cells sustaining DNA double-strand breaks. Cancer Res. 2011;71:6261–69.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Watters JW, Roberts CJ. Developing gene expression signatures of pathway deregulation in tumors. Mol Cancer Ther. 2006;5:2444–49.CrossRefPubMedGoogle Scholar
  62. Yang ZJ, Chee CE, Huang S, Sinicrope FA. The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther. 2011;10:1533–41.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Yuan J, Luo K, Deng M, Li Y, Yin P, Gao B, et al. HERC2-USP20 axis regulates DNA damage checkpoint through Claspin. Nucleic Acids Res. 2014;42:13110–21.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Zong WX, Thompson CB. Necrotic death as a cell fate. Genes Dev. 2006;20:1–15.CrossRefPubMedGoogle Scholar
  65. Zou Y, Ling YH, Sironi J, Schwartz EL, Perez-Soler R, Piperdi B. The autophagy inhibitor chloroquine overcomes the innate resistance of wild-type EGFR non-small-cell lung cancer cells to erlotinib. J Thorac Oncol. 2013;8:693–702.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Otilija Keta
    • 1
  • Tanja Bulat
    • 1
  • Igor Golić
    • 2
  • Sebastien Incerti
    • 3
  • Aleksandra Korać
    • 2
  • Ivan Petrović
    • 1
  • Aleksandra Ristić-Fira
    • 1
  1. 1.Vinča Institute of Nuclear SciencesUniversity of BelgradeBelgradeSerbia
  2. 2.Faculty of BiologyUniversity of BelgradeBelgradeSerbia
  3. 3.CNRS/IN2P3, Centre d’Etudes Nucléaires de Bordeaux Gradignan, CENBGUniversité Bordeaux 1GradignanFrance

Personalised recommendations