Cell Biology and Toxicology

, Volume 30, Issue 3, pp 169–188 | Cite as

Food grade titanium dioxide disrupts intestinal brush border microvilli in vitro independent of sedimentation

  • James J. Faust
  • Kyle Doudrick
  • Yu Yang
  • Paul Westerhoff
  • David G. CapcoEmail author
Original Research


Bulk- and nano-scale titanium dioxide (TiO2) has found use in human food products for controlling color, texture, and moisture. Once ingested, and because of their small size, nano-scale TiO2 can interact with a number of epithelia that line the human gastrointestinal tract. One such epithelium responsible for nutrient absorption is the small intestine, whose constituent cells contain microvilli to increase the total surface area of the gut. Using a combination of scanning and transmission electron microscopy it was found that food grade TiO2 (E171 food additive coded) included ∼25 % of the TiO2 as nanoparticles (NPs; <100 nm), and disrupted the normal organization of the microvilli as a consequence of TiO2 sedimentation. It was found that TiO2 isolated from the candy coating of chewing gum and a commercially available TiO2 food grade additive samples were of the anatase crystal structure. Exposure to food grade TiO2 additives, containing nanoparticles, at the lowest concentration tested within this experimental paradigm to date at 350 ng/mL (i.e., 100 ng/cm2 cell surface area) resulted in disruption of the brush border. Through the use of two independent techniques to remove the effects of gravity, and subsequent TiO2 sedimentation, it was found that disruption of the microvilli was independent of sedimentation. These data indicate that food grade TiO2 exposure resulted in the loss of microvilli from the Caco-2BBe1 cell system due to a biological response, and not simply a physical artifact of in vitro exposure.


Brush border Microvilli Nanotechnology Sedimentation Titanium dioxide Toxicity 



Brush border expressing 1


Inductively coupled plasma mass spectroscopy



The authors thank Mr. Xiangyu Bi for conducting ICP-MS on the TiO2 samples. We wish to thank David Lowry for his assistance in the W.M. Keck Bioimaging Facility at ASU. The authors thank Dr. Karen Sweazea for the use of Sigma Stat version 3.5 software used for multiple comparisons.

Conflict of interest

The authors declare no competing interest. Funding was provided by an NSF award (CBET 1336542) to P.W.

Supplementary material

10565_2014_9278_MOESM1_ESM.png (99 kb)
Supplemental Fig. 1 XPS K 2p spectra of gum TiO2. (PNG 98 kb)
10565_2014_9278_MOESM2_ESM.png (138 kb)
Supplemental Fig. 2 XPS wide scan for food grade TiO2. (PNG 137 kb)
10565_2014_9278_MOESM3_ESM.png (145 kb)
Supplemental Fig. 3 XPS wide scan for gum TiO2. (PNG 145 kb)
10565_2014_9278_MOESM4_ESM.png (248 kb)
Supplemental Fig. 4 XPS C 1s spectra of gum TiO2 (PNG 247 kb)

(AVI 2679 kb)


(AVI 6601 kb)


(AVI 12147 kb)


  1. APHA, AWWA & WEF 2005. Standard Methods for the Examination of Water and Wastewater.Google Scholar
  2. Bachman BJ, Vasile MJ. Ion bombardment of polyimide films. J Vac Sci Technol A Vac Surf Films. 1989;7:2709–16.CrossRefGoogle Scholar
  3. Begg DA, Rodewald R, Rebhun LI. The visualization of actin filament polarity in thin sections. Evidence for the uniform polarity of membrane-associated filaments. J Cell Biol. 1978;79:846–52.PubMedCrossRefGoogle Scholar
  4. Bement WM, Mooseker MS. The cytoskeleton of the intestinal epithelium: components, assembly, and dynamic rearrangements. Cytoskeleton Multi-Vol treat. 1996;3:359–404.CrossRefGoogle Scholar
  5. Bretscher A. Microfilament organization in the cytoskeleton of the intestinal brush border. Cell Muscle Motil. 1983;4:239.PubMedGoogle Scholar
  6. Bretscher A, Weber K. Fimbrin, a new microfilament-associated protein present in microvilli and other cell surface structures. J Cell Biol. 1980a;86:335–40.PubMedCrossRefGoogle Scholar
  7. Bretscher A, Weber K. Villin is a major protein of the microvillus cystoskeleton which binds both G and F actin in a calcium-dependent manner. Cell. 1980b;20:839–47.PubMedCrossRefGoogle Scholar
  8. Cho EC, Zhang Q, Xia Y. The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nat Nanotechnol. 2011;6:385–91.PubMedCentralPubMedCrossRefGoogle Scholar
  9. Clark D, Thomas H. Applications of ESCA to polymer chemistry. XVII Systematic investigation of the core levels of simple homopolymers. J Polym Sci Polym Chem Ed. 1978;16:791–820.CrossRefGoogle Scholar
  10. Delpeux S, Beguin F, Benoit R, Erre R, Manolova N, Rashkov I. Fullerene core star-like polymers—1. Preparation from fullerenes and monoazidopolyethers. Eur Polym J. 1998;34:905–15.CrossRefGoogle Scholar
  11. De Beauregard MC, Pringault E, Robine S, Louvard D. Suppression of villin expression by antisense RNA impairs brush border assembly in polarized epithelial intestinal cells. EMBO J. 1995;14:409.Google Scholar
  12. Demri B, Muster D. XPS study of some calcium compounds. J Mater Process Technol. 1995;55:311–4.CrossRefGoogle Scholar
  13. Duan Y, Liu J, Ma L, Li N, Liu H, Wang J, et al. Toxicological characteristics of nanoparticulate anatase titanium dioxide in mice. Biomaterials. 2010;31:894–9.PubMedCrossRefGoogle Scholar
  14. Dunphy Guzman KA, Taylor MR, Banfield JF. Environmental risks of nanotechnology: National nanotechnology initiative funding, 2000–2004. Environ Sci Technol. 2006;40:1401–7.CrossRefGoogle Scholar
  15. Faust JJ, Masserano BM, Mielke AH, Abraham A, Capco DG. Engineered nanoparticles induced brush border disruption in a human model of the intestinal epithelium. Nanomaterial. Springer; 2014a.Google Scholar
  16. Faust JJ, Zhang W, Chen Y, Capco DG. Alpha-Fe2O3 elicits diameter-dependent effects during exposure to an in vitro model of the human placenta. Cell Biol Toxicol. 2014b;1–23.Google Scholar
  17. Ferrary E, Cohen-Tannoudji M, Pehau-Arnaudet G, Lapillonne A, Athman R, Ruiz T, et al. In vivo, villin is required for Ca2+-dependent F-actin disruption in intestinal brush borders. J Cell Biol. 1999;146:819–30.PubMedCentralPubMedCrossRefGoogle Scholar
  18. Fröhlich E, Roblegg E. Models for oral uptake of nanoparticles in consumer products. Toxicology. 2012;291:10–7.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Gardner SD, Singamsetty CS, Booth GL, He G-R, Pittman CU. Surface characterization of carbon fibers using angle-resolved XPS and ISS. Carbon. 1995;33:587–95.CrossRefGoogle Scholar
  20. Grimm-Günter E-M, Revenu C, Ramos S, Hurbain I, Smyth N, Ferrary E, et al. Plastin 1 binds to keratin and is required for terminal web assembly in the intestinal epithelium. Mol Biol Cell. 2009;20:2549–62.PubMedCentralPubMedCrossRefGoogle Scholar
  21. Heintzelman MB, Mooseker MS. Assembly of the intestinal brush border cytoskeleton. Curr Top Dev Biol. 1992;26:93–122.PubMedCrossRefGoogle Scholar
  22. Hirokawa N, Cheney RE, Willard M. Location of a protein of the fodrin-spectrin-TW260/240 family in the mouse intestinal brush border. Cell. 1983;32:953–65.PubMedCrossRefGoogle Scholar
  23. Hirokawa N, Heuser JE. Quick-freeze, deep-etch visualization of the cytoskeleton beneath surface differentiations of intestinal epithelial cells. J Cell Biol. 1981;91:399–409.PubMedCrossRefGoogle Scholar
  24. Hirokawa N, Tilney LG, Fujiwara K, Heuser JE. Organization of actin, myosin, and intermediate filaments in the brush border of intestinal epithelial cells. J Cell Biol. 1982;94:425–43.PubMedCrossRefGoogle Scholar
  25. Howe CL, Mooseker MS. Characterization of the 110-kdalton actin-calmodulin-, and membrane-binding protein from microvilli of intestinal epithelial cells. J Cell Biol. 1983;97:974–85.PubMedCrossRefGoogle Scholar
  26. Hu R, Gong X, Duan Y, Li N, Che Y, Cui Y, et al. Neurotoxicological effects and the impairment of spatial recognition memory in mice caused by exposure to TiO2 nanoparticles. Biomaterials. 2010;31:8043–50.PubMedCrossRefGoogle Scholar
  27. Ishikawa H, Bischoff R, Holtzer H. Formation of arrowhead complexes with heavy meromyosin in a variety of cell types. J Cell Biol. 1969;43:312–28.PubMedCentralPubMedCrossRefGoogle Scholar
  28. Jouan P-Y, Peignon M-C, Cardinaud C, Lemperiere G. Characterisation of TiN coatings and of the TiN/Si interface by X-ray photoelectron spectroscopy and Auger electron spectroscopy. Appl Surf Sci. 1993;68:595–603.CrossRefGoogle Scholar
  29. Kalive M, Zhang W, Chen Y, Capco DG. Human intestinal epithelial cells exhibit a cellular response indicating a potential toxicity upon exposure to hematite nanoparticles. Cell Biol Toxicol. 2012;28:343–68.PubMedCrossRefGoogle Scholar
  30. Koeneman BA, Zhang Y, Westerhoff P, Chen Y, Crittenden JC, Capco DG. Toxicity and cellular responses of intestinal cells exposed to titanium dioxide. Cell Biol Toxicol. 2010;26:225–38.PubMedCrossRefGoogle Scholar
  31. Lesniak A, Fenaroli F, MONOPOLI MP, Åberg C, DAWSON KA, Salvati A. Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano. 2012;6:5845–57.PubMedCrossRefGoogle Scholar
  32. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci. 2008;105:14265–70.PubMedCentralPubMedCrossRefGoogle Scholar
  33. Milani S, Baldelli Bombelli F, Pitek AS, Dawson KA, Rädler J. Reversible versus irreversible binding of transferrin to polystyrene nanoparticles: soft and hard corona. ACS Nano. 2012;6:2532–41.PubMedCrossRefGoogle Scholar
  34. Mooseker MS. Organization, chemistry, and assembly of the cytoskeletal apparatus of the intestinal brush border. Annu Rev Cell Biol. 1985;1:209–41.PubMedCrossRefGoogle Scholar
  35. Mukherjee T, Staehelin L. The fine-structural organization of the brush border of intestinal epithelial cells. J Cell Sci. 1971;8:573–99.PubMedGoogle Scholar
  36. Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, et al. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol. 2005;2:8.Google Scholar
  37. OECD 1994. OECD Guidelines for the Testing of Chemicals, Organization for Economic.Google Scholar
  38. Patterson A. The Scherrer formula for X-ray particle size determination. Phys Rev. 1939;56:978.CrossRefGoogle Scholar
  39. Peterson M, Mooseker M. Characterization of the enterocyte-like brush border cytoskeleton of the C2BBe clones of the human intestinal cell line, Caco-2. J Cell Sci. 1992;102:581–600.PubMedGoogle Scholar
  40. Peterson MD, Bement WM, Mooseker MS. An in vitro model for the analysis of intestinal brush border assembly. II. Changes in expression and localization of brush border proteins during cell contact-induced brush border assembly in Caco-2BBe cells. J Cell Sci. 1993;105:461–72.PubMedGoogle Scholar
  41. Peterson MD, Mooseker MS. An in vitro model for the analysis of intestinal brush border assembly. I. Ultrastructural analysis of cell contact-induced brush border assembly in Caco-2BBe cells. J Cell Sci. 1993;105:445–60.PubMedGoogle Scholar
  42. Powell JJ, Faria N, Thomas-Mckay E, Pele LC. Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. J Autoimmun. 2010;34:J226–33.PubMedCrossRefGoogle Scholar
  43. Regulations CF. Title 21. Chapter I (revised). 2000;Google Scholar
  44. Revenu C, Ubelmann F, Hurbain I, El-Marjou F, Dingli F, Loew D, et al. A new role for the architecture of microvillar actin bundles in apical retention of membrane proteins. Mol Biol Cell. 2012;23:324–36.PubMedCentralPubMedCrossRefGoogle Scholar
  45. Schwarz RP, Wolf DA. Rotating bio-reactor cell culture apparatus. 1991;Google Scholar
  46. Shih P, Yung S, Chin T. Thermal and corrosion behavior of P2O5−Na2O–CuO glasses. J Non-Cryst Solids. 1998;224:143–52.CrossRefGoogle Scholar
  47. Stidwill RP, Wysolmerski T, Burgess DR. The brush border cytoskeleton is not static: in vivo turnover of proteins. J Cell Biol. 1984;98:641–5.PubMedCrossRefGoogle Scholar
  48. Tanuma S, Powell CJ, Penn DR. Calculations of electron inelastic mean free paths. V. Data for 14 organic compounds over the 50–2000eV range. Surf Interface Anal. 1994;21:165–76.CrossRefGoogle Scholar
  49. Tilney LG, Mooseker M. Actin in the brush-border of epithelial cells of the chicken intestine. Proc Natl Acad Sc. 1971;68:2611–5.CrossRefGoogle Scholar
  50. Van Der Flier LG, Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol. 2009;71:241–60.PubMedCrossRefGoogle Scholar
  51. Wang J, Zhou G, Chen C, Yu H, Wang T, Ma Y, et al. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett. 2007;168:176–85.PubMedCrossRefGoogle Scholar
  52. Warheit DB, Hoke RA, Finlay C, Donner EM, Reed KL, Sayes CM. Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol Lett. 2007;171:99–110.PubMedCrossRefGoogle Scholar
  53. Weir A, Westerhoff P, Fabricius L, Hristovski K, Von Goetz N. Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol. 2012;46:2242–50.PubMedCentralPubMedCrossRefGoogle Scholar
  54. Weng L, Poleunis C, Bertrand P, Carlier V, Sclavons M, Franquinet P, et al. Sizing removal and functionalization of the carbon fiber surface studied by combined TOF SIMS and XPS. J Adhes Sci Technol. 1995;9:859–71.CrossRefGoogle Scholar
  55. Yang Y, Doudrick K, Bi X, Hristovski K, Herckes P, Westerhoff P, Kaegi R. Characterization of food-grade titanium dioxide: presence of nano-size particles. Environ Sci Technol. 2014. doi: 10.1021/es500436x.
  56. Zhang W, Kalive M, Capco DG, Chen Y. Adsorption of hematite nanoparticles onto Caco-2 cells and the cellular impairments: effect of particle size. Nanotechnology. 2010;21:355103.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • James J. Faust
    • 1
  • Kyle Doudrick
    • 2
  • Yu Yang
    • 2
  • Paul Westerhoff
    • 2
  • David G. Capco
    • 1
    Email author
  1. 1.Molecular and Cellular Biosciences, School of Life SciencesArizona State UniversityTempeUSA
  2. 2.School of Sustainable Engineering and the Built EnvironmentArizona State UniversityTempeUSA

Personalised recommendations