Cell Biology and Toxicology

, Volume 29, Issue 4, pp 199–211 | Cite as

Mechanisms of proteasome inhibitor-induced cytotoxicity in malignant glioma

  • Panagiotis J. Vlachostergios
  • Ioannis A. Voutsadakis
  • Christos N. Papandreou
Review Article

Abstract

The 26S proteasome constitutes an essential degradation apparatus involved in the consistent recycling of misfolded and damaged proteins inside cells. The aberrant activation of the proteasome has been widely observed in various types of cancers and implicated in the development and progression of carcinogenesis. In the era of targeted therapies, the clinical use of proteasome inhibitors necessitates a better understanding of the molecular mechanisms of cell death responsible for their cytotoxic action, which are reviewed here in the context of sensitization of malignant gliomas, a tumor type particularly refractory to conventional treatments.

Keywords

Glioma Proteasome inhibitor Cytotoxicity Apoptosis Necrosis Autophagy 

Notes

Conflict of interest statement

There is no conflict of interest or financial support related to this article.

References

  1. Adams J, Palombella VJ, Sausville EA, Johnson J, Destree A, Lazarus DD, et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res. 1999;59:2615–22.PubMedGoogle Scholar
  2. Ahmed SF, Deb S, Paul I, Chatterjee A, Mandal T, Chatterjee U, et al. The chaperone-assisted E3 ligase C terminus of Hsc70-interacting protein (CHIP) targets PTEN for proteasomal degradation. J Biol Chem. 2012;287:15996–6006.PubMedCrossRefGoogle Scholar
  3. An J, Rettig MB. Epidermal growth factor receptor inhibition sensitizes renal cell carcinoma cells to the cytotoxic effects of bortezomib. Mol Cancer Ther. 2007;6:61–9.PubMedCrossRefGoogle Scholar
  4. Balyasnikova IV, Ferguson SD, Han Y, Liu F, Lesniak MS. Therapeutic effect of neural stem cells expressing TRAIL and bortezomib in mice with glioma xenografts. Cancer Lett. 2011;310:148–59.PubMedCrossRefGoogle Scholar
  5. Baron V, Schwartz M. Cell adhesion regulates ubiquitin-mediated degradation of the platelet-derived growth factor receptor beta. J Biol Chem. 2000;275:39318–23.PubMedCrossRefGoogle Scholar
  6. Barr P, Fisher R, Friedberg J. The role of bortezomib in the treatment of lymphoma. Cancer Invest. 2007;25:766–75.PubMedCrossRefGoogle Scholar
  7. Burger AM, Seth AK. The ubiquitin-mediated protein degradation pathway in cancer: therapeutic implications. Eur J Cancer. 2004;40:2217–29.PubMedCrossRefGoogle Scholar
  8. Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455:1061–8.CrossRefGoogle Scholar
  9. Cavaliere R, Newton H. Cytotoxic and molecular chemotherapy for high-grade glioma: an emerging strategy for the future. Expert Opin Pharmacother. 2006;7:749–65.PubMedCrossRefGoogle Scholar
  10. Cecarini V, Quassinti L, Di Blasio A, Bonfili L, Bramucci M, Lupidi G, et al. Effects of thymoquinone on isolated and cellular proteasomes. FEBS J. 2010;277:2128–41.PubMedCrossRefGoogle Scholar
  11. Ceruti S, Mazzola A, Abbracchio MP. Proteasome inhibitors potentiate etoposide-induced cell death in human astrocytoma cells bearing a mutated p53 isoform. J Pharmacol Exp Ther. 2006;319:1424–34.PubMedCrossRefGoogle Scholar
  12. Chang CH, Horton J, Schoenfeld D, Salazer O, Perez-Tamayo R, Kramer S, et al. Comparison of postoperative radiotherapy and combined postoperative radiotherapy and chemotherapy in the multidisciplinary management of malignant gliomas. A joint Radiation Therapy Oncology Group and Eastern Cooperative Oncology Group Study. Cancer. 1983;52:997–1007.PubMedCrossRefGoogle Scholar
  13. Cichowski K, Santiago S, Jardim M, Johnson BW, Jacks T. Dynamic regulation of the Ras pathway via proteolysis of the NF1 tumor suppressor. Genes Dev. 2003;17:449–54.PubMedCrossRefGoogle Scholar
  14. Ding WX, Yin XM. Sorting, recognition and activation of the misfolded protein degradation pathways through macroautophagy and the proteasome. Autophagy. 2008;4:141–50.PubMedGoogle Scholar
  15. Driscoll JJ, Woodle ES. Targeting the ubiquitin + proteasome system in solid tumors. Semin Hematol. 2012;49:277–83.PubMedCrossRefGoogle Scholar
  16. Durrant D, Liu J, Yang HS, Lee RM. The bortezomib-induced mitochondrial damage is mediated by accumulation of active protein kinase C-delta. Biochem Biophys Res Commun. 2004;321:905–8.PubMedCrossRefGoogle Scholar
  17. Fan WH, Hou Y, Meng FK, Wang XF, Luo YN, Ge PF. Proteasome inhibitor MG-132 induces C6 glioma cell apoptosis via oxidative stress. Acta Pharmacol Sin. 2011;32:619–25.PubMedCrossRefGoogle Scholar
  18. Foti C, Florean C, Pezzutto A, Roncaglia P, Tomasella A, Gustincich S, et al. Characterization of caspase-dependent and caspase-independent deaths in glioblastoma cells treated with inhibitors of the ubiquitin–proteasome system. Mol Cancer Ther. 2009;8:3140–50.PubMedCrossRefGoogle Scholar
  19. Friday BB, Anderson SK, Buckner J, Yu C, Giannini C, Geoffroy F, et al. Phase II trial of vorinostat in combination with bortezomib in recurrent glioblastoma: a north central cancer treatment group study. Neuro Oncol. 2012;14:215–21.PubMedCrossRefGoogle Scholar
  20. Ge P, Ji X, Ding Y, Wang X, Fu S, Meng F, et al. Celastrol causes apoptosis and cell cycle arrest in rat glioma cells. Neurol Res. 2010;32:94–100.PubMedCrossRefGoogle Scholar
  21. Ge PF, Zhang JZ, Wang XF, Meng FK, Li WC, Luan YX, et al. Inhibition of autophagy induced by proteasome inhibition increases cell death in human SHG-44 glioma cells. Acta Pharmacol Sin. 2009;30:1046–52.PubMedCrossRefGoogle Scholar
  22. Glogowska A, Stetefeld J, Weber E, Ghavami S, Hoang-Vu C, Klonisch T. Epidermal growth factor cytoplasmic domain affects ErbB protein degradation by the lysosomal and ubiquitin–proteasome pathway in human cancer cells. Neoplasia. 2012;14:396–409.PubMedGoogle Scholar
  23. Gong X, Schwartz PH, Linskey ME, Bota DA. Neural stem/progenitors and glioma stem-like cells have differential sensitivity to chemotherapy. Neurology. 2011;76:1126–34.PubMedCrossRefGoogle Scholar
  24. Hegi ME, Liu L, Herman JG, Stupp R, Wick W, Weller M, et al. Correlation of O 6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity. J Clin Oncol. 2008;26:4189–99.PubMedCrossRefGoogle Scholar
  25. Henninger N, Sicard KM, Bouley J, Fisher M, Stagliano NE. The proteasome inhibitor VELCADE reduces infarction in rat models of focal cerebral ischemia. Neurosci Lett. 2006;398:300–5.PubMedCrossRefGoogle Scholar
  26. Herrmann J, Lerman LO, Lerman A. Ubiquitin and ubiquitin-like proteins in protein regulation. Circ Res. 2007;100:1276–91.PubMedCrossRefGoogle Scholar
  27. Hetschko H, Voss V, Seifert V, Prehn JH, Kögel D. Upregulation of DR5 by proteasome inhibitors potently sensitizes glioma cells to TRAIL-induced apoptosis. FEBS J. 2008;275:1925–36.PubMedCrossRefGoogle Scholar
  28. Higashitsuji H, Itoh K, Nagao T, Dawson S, Nonoguchi K, Kido T, et al. Reduced stability of retinoblastoma protein by gankyrin, an oncogenic ankyrin-repeat protein overexpressed in hepatomas. Nat Med. 2000;6:96–9.PubMedCrossRefGoogle Scholar
  29. Hoeller D, Hecker CM, Dikic I. Ubiquitin and ubiquitin-like proteins in cancer pathogenesis. Nat Rev Cancer. 2006;6:776–88.PubMedCrossRefGoogle Scholar
  30. Huang L, Chen CH. Proteasome regulators: activators and inhibitors. Curr Med Chem. 2009;16:931–9.PubMedCrossRefGoogle Scholar
  31. Jane EP, Premkumar DR, Pollack IF. Bortezomib sensitizes malignant human glioma cells to TRAIL, mediated by inhibition of the NF-{kappa}B signaling pathway. Mol Cancer Ther. 2011;10:198–208.PubMedCrossRefGoogle Scholar
  32. Johnson GG, White MC, Grimaldi M. Stressed to death: targeting endoplasmic reticulum stress response induced apoptosis in gliomas. Curr Pharm Des. 2011;17:284–92.PubMedCrossRefGoogle Scholar
  33. Kardosh A, Golden EB, Pyrko P, Uddin J, Hofman FM, Chen TC, et al. Aggravated endoplasmic reticulum stress as a basis for enhanced glioblastoma cell killing by bortezomib in combination with celecoxib or its non-coxib analogue, 2,5-dimethyl-celecoxib. Cancer Res. 2008;68:843–51.PubMedCrossRefGoogle Scholar
  34. Kawabata S, Gills JJ, Mercado-Matos JR, Lopiccolo J, Wilson 3rd W, Hollander MC, et al. Synergistic effects of nelfinavir and bortezomib on proteotoxic death of NSCLC and multiple myeloma cells. Cell Death Dis. 2012;3:e353.PubMedCrossRefGoogle Scholar
  35. Kim K, Brush JM, Watson PA, Cacalano NA, Iwamoto KS, McBride WH. Epidermal growth factor receptor vIII expression in U87 glioblastoma cells alters their proteasome composition, function, and response to irradiation. Mol Cancer Res. 2008;6:426–34.PubMedCrossRefGoogle Scholar
  36. Kim S, Choi K, Kwon D, Benveniste EN, Choi C. Ubiquitin–proteasome pathway as a primary defender against TRAIL-mediated cell death. Cell Mol Life Sci. 2004;61:1075–81.PubMedCrossRefGoogle Scholar
  37. Kitagawa H, Tani E, Ikemoto H, Ozaki I, Nakano A, Omura S. Proteasome inhibitors induce mitochondria-independent apoptosis in human glioma cells. FEBS Lett. 1999;443:181–6.PubMedCrossRefGoogle Scholar
  38. Kleinschnitz C, Blecharz K, Kahles T, Schwarz T, Kraft P, Göbel K, et al. Glucocorticoid insensitivity at the hypoxic blood–brain barrier can be reversed by inhibition of the proteasome. Stroke. 2011;42:1081–9.PubMedCrossRefGoogle Scholar
  39. Ko A, Shin JY, Seo J, Lee KD, Lee EW, Lee MS, et al. Acceleration of gastric tumorigenesis through MKRN1-mediated posttranslational regulation of p14ARF. J Natl Cancer Inst. 2012;104:1660–72.PubMedCrossRefGoogle Scholar
  40. Ko JK, Choi CH, Kim YK, Kwon CH. The proteasome inhibitor MG-132 induces AIF nuclear translocation through down-regulation of ERK and Akt/mTOR pathway. Neurochem Res. 2011;36:722–31.PubMedCrossRefGoogle Scholar
  41. Komatsu S, Miyazawa K, Moriya S, Takase A, Naito M, Inazu M, et al. Clarithromycin enhances bortezomib-induced cytotoxicity via endoplasmic reticulum stress-mediated CHOP (GADD153) induction and autophagy in breast cancer cells. Int J Oncol. 2012;40:1029–39.PubMedGoogle Scholar
  42. Koschny R, Holland H, Sykora J, Haas TL, Sprick MR, Ganten TM, et al. Bortezomib sensitizes primary human astrocytoma cells of WHO grades I to IV for tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. Clin Cancer Res. 2007;13:3403–12.PubMedCrossRefGoogle Scholar
  43. Kubicek GJ, Werner-Wasik M, Machtay M, Mallon G, Myers T, Ramirez M, et al. Phase I trial using proteasome inhibitor bortezomib and concurrent temozolomide and radiotherapy for central nervous system malignancies. Int J Radiat Oncol Biol Phys. 2009;74:433–9.PubMedCrossRefGoogle Scholar
  44. Kyritsis AP, Tachmazoglou F, Rao JS, Puduvalli VK. Bortezomib sensitizes human astrocytoma cells to tumor necrosis factor related apoptosis-inducing ligand induced apoptosis. Clin Cancer Res. 2007;13:6540–1. author reply 6541–2.PubMedCrossRefGoogle Scholar
  45. Labussiere M, Pinel S, Delfortrie S, Plenat F, Chastagner P. Proteasome inhibition by bortezomib does not translate into efficacy on two malignant glioma xenografts. Oncol Rep. 2008;20:1283–7.PubMedGoogle Scholar
  46. La Ferla-Brühl K, Westhoff MA, Karl S, Kasperczyk H, Zwacka RM, Debatin KM, et al. NF-kappaB-independent sensitization of glioblastoma cells for TRAIL-induced apoptosis by proteasome inhibition. Oncogene. 2007;26:571–82.PubMedCrossRefGoogle Scholar
  47. Legnani FG, Pradilla G, Thai QA, Fiorindi A, Recinos PF, Tyler BM, et al. Lactacystin exhibits potent anti-tumor activity in an animal model of malignant glioma when administered via controlled-release polymers. J Neurooncol. 2006;77:225–32.PubMedCrossRefGoogle Scholar
  48. Lehman NL. The ubiquitin proteasome system in neuropathology. Acta Neuropathol. 2009;118:329–47.PubMedCrossRefGoogle Scholar
  49. Lennartsson J, Wardega P, Engström U, Hellman U, Heldin CH. Alix facilitates the interaction between c-Cbl and platelet-derived growth factor beta-receptor and thereby modulates receptor down-regulation. J Biol Chem. 2006;281:39152–8.PubMedCrossRefGoogle Scholar
  50. Lièvre A, Bachet JB, Le Corre D, Boige V, Landi B, Emile JF, et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. 2006;66:3992–5.PubMedCrossRefGoogle Scholar
  51. Liu Y, Ye Y. Proteostasis regulation at the endoplasmic reticulum: a new perturbation site for targeted cancer therapy. Cell Res. 2011;21:867–83.PubMedCrossRefGoogle Scholar
  52. Low J, Blosser W, Dowless M, Ricci-Vitiani L, Pallini R, de Maria R, et al. Knockdown of ubiquitin ligases in glioblastoma cancer stem cells leads to cell death and differentiation. J Biomol Screen. 2012;17:152–62.PubMedCrossRefGoogle Scholar
  53. Ludwig H, Khayat D, Giaccone G, Facon T. Proteasome inhibition and its clinical prospects in the treatment of hematologic and solid malignancies. Cancer. 2005;104:1794–807.PubMedCrossRefGoogle Scholar
  54. Mani A, Gelmann EP. The ubiquitin–proteasome pathway and its role in cancer. J Clin Oncol. 2005;23:4776–89.PubMedCrossRefGoogle Scholar
  55. Martinon F. Targeting endoplasmic reticulum signaling pathways in cancer. Acta Oncol. 2012;51:822–30.PubMedCrossRefGoogle Scholar
  56. Medical Research Council Brain Tumor Working Party. Randomized trial of procarbazine, lomustine, and vincristine in the adjuvant treatment of high-grade astrocytoma: a Medical Research Council trial. J Clin Oncol. 2001;19:509–18.Google Scholar
  57. Mehling M, Simon P, Mittelbronn M, Meyermann R, Ferrone S, Weller M, et al. WHO grade associated downregulation of MHC class I antigen-processing machinery components in human astrocytomas: does it reflect a potential immune escape mechanism? Acta Neuropathol. 2007;114:111–9.PubMedCrossRefGoogle Scholar
  58. Milano A, Iaffaioli RV, Caponigro F. The proteasome: a worthwhile target for the treatment of solid tumours? Eur J Cancer. 2007;43:1125–33.PubMedCrossRefGoogle Scholar
  59. Mladkova N, Chakravarti A. Molecular profiling in glioblastoma: prelude to personalized treatment. Curr Oncol Rep. 2009;11:53–61.PubMedCrossRefGoogle Scholar
  60. Morgillo F, D'Aiuto E, Troiani T, Martinelli E, Cascone T, De Palma R, et al. Antitumor activity of bortezomib in human cancer cells with acquired resistance to anti-epidermal growth factor receptor tyrosine kinase inhibitors. Lung Cancer. 2011;71:283–90.PubMedCrossRefGoogle Scholar
  61. Moriya S, Che XF, Komatsu S, Abe A, Kawaguchi T, Gotoh A, et al. Macrolide antibiotics block autophagy flux and sensitize to bortezomib via endoplasmic reticulum stress-mediated CHOP induction in myeloma cells. Int J Oncol. 2013;42:1541–50.PubMedGoogle Scholar
  62. Naumann U, Schmidt F, Wick W, Frank B, Weit S, Gillissen B, et al. Adenoviral natural born killer gene therapy for malignant glioma. Hum Gene Ther. 2003;14:1235–46.PubMedCrossRefGoogle Scholar
  63. Ng K, Nitta M, Hu L, Kesari S, Kung A, D'Andrea A, et al. A small interference RNA screen revealed proteasome inhibition as strategy for glioblastoma therapy. Clin Neurosurg. 2009;56:107–18.PubMedGoogle Scholar
  64. Ohgaki H, Kleihues P. Genetic pathways to primary and secondary glioblastoma. Am J Pathol. 2007;170:1445–53.PubMedCrossRefGoogle Scholar
  65. Pédeboscq S, L'Azou B, Passagne I, De Giorgi F, Ichas F, Pometan JP, et al. Cytotoxic and apoptotic effects of bortezomib and gefitinib compared to alkylating agents on human glioblastoma cells. J Exp Ther Oncol. 2008;7:99–111.PubMedGoogle Scholar
  66. Phuphanich S, Supko JG, Carson KA, Grossman SA, Burt Nabors L, Mikkelsen T, et al. Phase 1 clinical trial of bortezomib in adults with recurrent malignant glioma. J Neurooncol. 2010;100:95–103.PubMedCrossRefGoogle Scholar
  67. Piccinini M, Rinaudo MT, Anselmino A, Ramondetti C, Buccinnà B, Fiano V, et al. Characterization of the 20S proteasome in human glioblastomas. Anticancer Res. 2005;25:3203–10.PubMedGoogle Scholar
  68. Premkumar DR, Jane EP, Agostino NR, DiDomenico JD, Pollack IF. Bortezomib-induced sensitization of malignant human glioma cells to vorinostat-induced apoptosis depends on reactive oxygen species production, mitochondrial dysfunction, Noxa upregulation, Mcl-1 cleavage, and DNA damage. Mol Carcinog. 2013;52:118–33.PubMedCrossRefGoogle Scholar
  69. Premkumar DR, Jane EP, DiDomenico JD, Vukmer NA, Agostino NR, Pollack IF. ABT-737 synergizes with bortezomib to induce apoptosis, mediated by Bid cleavage, Bax activation, and mitochondrial dysfunction in an Akt-dependent context in malignant human glioma cell lines. J Pharmacol Exp Ther. 2012;341:859–72.PubMedCrossRefGoogle Scholar
  70. Preusser M, Haberler C, Hainfellner JA. Malignant glioma: neuropathology and neurobiology. Wien Med Wochenschr. 2006;156:332–7.PubMedCrossRefGoogle Scholar
  71. Pyrko P, Kardosh A, Wang W, Xiong W, Schönthal AH, Chen TC. HIV-1 protease inhibitors nelfinavir and atazanavir induce malignant glioma death by triggering endoplasmic reticulum stress. Cancer Res. 2007;67:10920–8.PubMedCrossRefGoogle Scholar
  72. Qu C, Mahmood A, Ning R, Xiong Y, Zhang L, Chen J, et al. The treatment of traumatic brain injury with velcade. J Neurotrauma. 2010;27:1625–34.PubMedCrossRefGoogle Scholar
  73. Richardson PG, Schlossman R, Hideshima T, Anderson KC. New treatments for multiple myeloma. Oncology (Williston Park). 2005;19:1781–92. discussion 1792, 1795–7.Google Scholar
  74. Roth P, Kissel M, Herrmann C, Eisele G, Leban J, Weller M, et al. SC68896, a novel small molecule proteasome inhibitor, exerts antiglioma activity in vitro and in vivo. Clin Cancer Res. 2009;15:6609–18.PubMedCrossRefGoogle Scholar
  75. Runge VM. Safety of approved MR contrast media for intravenous injection. J Magn Reson Imaging. 2000;12:205–13.PubMedCrossRefGoogle Scholar
  76. Sathornsumetee S, Reardon DA, Desjardins A, Quinn JA, Vredenburgh JJ, Rich JN. Molecularly targeted therapy for malignant glioma. Cancer. 2007;110:13–24.PubMedCrossRefGoogle Scholar
  77. Selimovic D, Porzig BB, El-Khattouti A, Badura HE, Ahmad M, Ghanjati F, et al. Bortezomib/proteasome inhibitor triggers both apoptosis and autophagy-dependent pathways in melanoma cells. Cell Signal. 2013;25:308–18.PubMedCrossRefGoogle Scholar
  78. Shapiro WR, Green SB, Burger PC, Mahaley Jr MS, Selker RG, VanGilder JC, et al. Randomized trial of three chemotherapy regimens and two radiotherapy regimens and two radiotherapy regimens in postoperative treatment of malignant glioma. Brain Tumor Cooperative Group Trial 8001. J Neurosurg. 1989;71:1–9.PubMedCrossRefGoogle Scholar
  79. Shi D, Gu W. Dual roles of MDM2 in the regulation of p53: ubiquitination dependent and ubiquitination independent mechanisms of MDM2 repression of p53 activity. Genes Cancer. 2012;3:240–8.PubMedCrossRefGoogle Scholar
  80. Shien K, Toyooka S, Yamamoto H, Soh J, Jida M, Thu KL, et al. Acquired resistance to EGFR inhibitors is associated with a manifestation of stem cell-like properties in cancer cells. Cancer Res. 2013;73:3051–61.Google Scholar
  81. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.PubMedCrossRefGoogle Scholar
  82. Stupp R, Tonn JC, Brada M, Pentheroudakis G, ESMO Guidelines Working Group. High-grade malignant glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2010;21 Suppl 5:v190–3.PubMedCrossRefGoogle Scholar
  83. Styczynski J, Olszewska-Slonina D, Kolodziej B, Napieraj M, Wysocki M. Activity of bortezomib in glioblastoma. Anticancer Res. 2006;26:4499–503.PubMedGoogle Scholar
  84. Tani E, Kitagawa H, Ikemoto H, Matsumoto T. Proteasome inhibitors induce Fas-mediated apoptosis by c-Myc accumulation and subsequent induction of FasL message in human glioma cells. FEBS Lett. 2001;504:53–8.PubMedCrossRefGoogle Scholar
  85. Thal SC, Schaible EV, Neuhaus W, Scheffer D, Brandstetter M, Engelhard K, et al. Inhibition of proteasomal glucocorticoid receptor degradation restores dexamethasone-mediated stabilization of the blood–brain barrier after traumatic brain injury*. Crit Care Med. 2013;41:1305–15.PubMedCrossRefGoogle Scholar
  86. Thompson SJ, Loftus LT, Ashley MD, Meller R. Ubiquitin–proteasome system as a modulator of cell fate. Curr Opin Pharmacol. 2008;8:90–5.PubMedCrossRefGoogle Scholar
  87. Unterkircher T, Cristofanon S, Vellanki SH, Nonnenmacher L, Karpel-Massler G, Wirtz CR, et al. Bortezomib primes glioblastoma, including glioblastoma stem cells, for TRAIL by increasing tBid stability and mitochondrial apoptosis. Clin Cancer Res. 2011;17:4019–30.PubMedCrossRefGoogle Scholar
  88. Vlachostergios PJ, Hatzidaki E, Stathakis NE, Koukoulis GK, Papandreou CN. Bortezomib downregulates MGMT expression in T98G glioblastoma cells. Cell Mol Neurobiol. 2013; 33:313–8.Google Scholar
  89. Vlachostergios PJ, Patrikidou A, Daliani DD, Papandreou CN. The ubiquitin–proteasome system in cancer, a major player in DNA repair. Part 1: post-translational regulation. J Cell Mol Med. 2009a;13:3006–18.PubMedCrossRefGoogle Scholar
  90. Vlachostergios PJ, Patrikidou A, Daliani DD, Papandreou CN. The ubiquitin–proteasome system in cancer, a major player in DNA repair. Part 2: transcriptional regulation. J Cell Mol Med. 2009b;13:3019–31.PubMedCrossRefGoogle Scholar
  91. Vlashi E, Kim K, Lagadec C, Donna LD, McDonald JT, Eghbali M, et al. In vivo imaging, tracking, and targeting of cancer stem cells. J Natl Cancer Inst. 2009;101:350–9.PubMedCrossRefGoogle Scholar
  92. Vlashi E, Mattes M, Lagadec C, Donna LD, Phillips TM, Nikolay P, et al. Differential effects of the proteasome inhibitor NPI-0052 against glioma cells. Transl Oncol. 2010;3:50–5.PubMedGoogle Scholar
  93. Wagenknecht B, Hermisson M, Eitel K, Weller M. Proteasome inhibitors induce p53/p21-independent apoptosis in human glioma cells. Cell Physiol Biochem. 1999;9:117–25.PubMedCrossRefGoogle Scholar
  94. Wagenknecht B, Hermisson M, Groscurth P, Liston P, Krammer PH, Weller M. Proteasome inhibitor-induced apoptosis of glioma cells involves the processing of multiple caspases and cytochrome c release. J Neurochem. 2000;75:2288–97.PubMedCrossRefGoogle Scholar
  95. Weaver KD, Yeyeodu S, Cusack Jr JC, Baldwin Jr AS, Ewend MG. Potentiation of chemotherapeutic agents following antagonism of nuclear factor kappa B in human gliomas. J Neurooncol. 2003;61:187–96.PubMedCrossRefGoogle Scholar
  96. Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med. 2008;359:492–507.PubMedCrossRefGoogle Scholar
  97. Williamson MJ, Blank JL, Bruzzese FJ, Cao Y, Daniels JS, Dick LR, et al. Comparison of biochemical and biological effects of ML858 (salinosporamide A) and bortezomib. Mol Cancer Ther. 2006;5:3052–61.PubMedCrossRefGoogle Scholar
  98. Wu WK, Cho CH, Lee CW, Wu K, Fan D, Yu J, et al. Proteasome inhibition: a new therapeutic strategy to cancer treatment. Cancer Lett. 2010a;293:15–22.PubMedCrossRefGoogle Scholar
  99. Wu WK, Sakamoto KM, Milani M, Aldana-Masankgay G, Fan D, Wu K, et al. Macroautophagy modulates cellular response to proteasome inhibitors in cancer therapy. Drug Resist Updat. 2010b;13:87–92.PubMedCrossRefGoogle Scholar
  100. Xia W, Liu Z, Zong R, Liu L, Zhao S, Bacus SS, et al. Truncated ErbB2 expressed in tumor cell nuclei contributes to acquired therapeutic resistance to ErbB2 kinase inhibitors. Mol Cancer Ther. 2011;10:1367–74.PubMedCrossRefGoogle Scholar
  101. Yan YY, Bai JP, Xie Y, Yu JZ, Ma CG. The triterpenoid pristimerin induces U87 glioma cell apoptosis through reactive oxygen species-mediated mitochondrial dysfunction. Oncol Lett. 2013a;5:242–8.PubMedGoogle Scholar
  102. Yan Y, Xu Y, Gao YY, Zong ZH, Zhang Q, Li C, et al. Implication of 14-3-3ε and 14-3-3θ/τ in proteasome inhibition-induced apoptosis of glioma cells. Cancer Sci. 2013b;104:55–61.PubMedCrossRefGoogle Scholar
  103. Yin D, Zhou H, Kumagai T, Liu G, Ong JM, Black KL, et al. Proteasome inhibitor PS-341 causes cell growth arrest and apoptosis in human glioblastoma multiforme (GBM). Oncogene. 2005;24:344–54.PubMedCrossRefGoogle Scholar
  104. Yu C, Friday BB, Lai JP, Yang L, Sarkaria J, Kay NE, et al. Cytotoxic synergy between the multikinase inhibitor sorafenib and the proteasome inhibitor bortezomib in vitro: induction of apoptosis through Akt and c-Jun NH2-terminal kinase pathways. Mol Cancer Ther. 2006;5:2378–87.PubMedCrossRefGoogle Scholar
  105. Yu C, Friday BB, Yang L, Atadja P, Wigle D, Sarkaria J, et al. Mitochondrial Bax translocation partially mediates synergistic cytotoxicity between histone deacetylase inhibitors and proteasome inhibitors in glioma cells. Neuro Oncol. 2008;10:309–19.PubMedCrossRefGoogle Scholar
  106. Zanotto-Filho A, Braganhol E, Battastini AM, Moreira JC. Proteasome inhibitor MG132 induces selective apoptosis in glioblastoma cells through inhibition of PI3K/Akt and NFkappaB pathways, mitochondrial dysfunction, and activation of p38-JNK1/2 signaling. Invest New Drugs. 2012;30:2252–62.PubMedCrossRefGoogle Scholar
  107. Zhang L, Zhang ZG, Buller B, Jiang J, Jiang Y, Zhao D, et al. Combination treatment with VELCADE and low-dose tissue plasminogen activator provides potent neuroprotection in aged rats after embolic focal ischemia. Stroke. 2010;41:1001–7.PubMedCrossRefGoogle Scholar
  108. Zhou L, Yang H. The von Hippel–Lindau tumor suppressor protein promotes c-Cbl-independent poly-ubiquitylation and degradation of the activated EGFR. PLoS One. 2011;6:e23936.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Panagiotis J. Vlachostergios
    • 1
  • Ioannis A. Voutsadakis
    • 2
  • Christos N. Papandreou
    • 1
  1. 1.Department of Medical Oncology, Faculty of MedicineUniversity of Thessaly, University Hospital of LarissaLarissaGreece
  2. 2.Centre Pluridisciplinaire d’ OncologieCentre Hospitalier Universitaire VaudoisLausanneSwitzerland

Personalised recommendations