Cell Biology and Toxicology

, Volume 27, Issue 5, pp 333–342

Cytotoxicity, permeability, and inflammation of metal oxide nanoparticles in human cardiac microvascular endothelial cells

Cytotoxicity, permeability, and inflammation of metal oxide nanoparticles
  • Jing Sun
  • Shaochuang Wang
  • Dong Zhao
  • Fei Han Hun
  • Lei Weng
  • Hui Liu
Article

Abstract

Wide applications and extreme potential of metal oxide nanoparticles (NPs) increase occupational and public exposure and may yield extraordinary hazards for human health. Exposure to NPs has a risk for dysfunction of the vascular endothelial cells. The objective of this study was to assess the cytotoxicity of six metal oxide NPs to human cardiac microvascular endothelial cells (HCMECs) in vitro. Metal oxide NPs used in this study included zinc oxide (ZnO), iron(III) oxide (Fe2O3), iron(II,III) oxide (Fe3O4), magnesium oxide (MgO), aluminum oxide (Al2O3), and copper(II) oxide (CuO). The cell viability, membrane leakage of lactate dehydrogenase, intracellular reactive oxygen species, permeability of plasma membrane, and expression of inflammatory markers vascular cell adhesion molecule-1, intercellular adhesion molecule-1, macrophage cationic peptide-1, and interleukin-8 in HCMECs were assessed under controlled and exposed conditions (12–24 h and 0.001–100 μg/ml of exposure). The results indicated that Fe2O3, Fe3O4, and Al2O3 NPs did not have significant effects on cytotoxicity, permeability, and inflammation response in HCMECs at any of the concentrations tested. ZnO, CuO, and MgO NPs produced the cytotoxicity at the concentration-dependent and time-dependent manner, and elicited the permeability and inflammation response in HCMECs. These results demonstrated that cytotoxicity, permeability, and inflammation in vascular endothelial cells following exposure to metal oxide nanoparticles depended on particle composition, concentration, and exposure time.

Keywords

Cytotoxicity Permeability Inflammation Metal oxide nanoparticles Vascular endothelial cells 

Abbreviations

NPs

Nanoparticles

Fe2O3

Iron(III) oxide

Y2O3

Yttrium oxide

CeO2

Cerium oxide

ZnO

Zinc oxide

Fe3O4

Iron(II,III) oxide

MgO

Magnesium oxide

Al2O3

Aluminum oxide

CuO

Copper(II) oxide

ECM

Endothelial cell medium

HCMECs

Human cardiac microvascular endothelial cells

LDH

Lactate dehydrogenase

ROS

Reactive oxygen species

VCAM-1

Vascular cell adhesion molecule-1

ICAM-1

Intercellular adhesion molecule 1

MCP-1

Macrophage cationic peptide-1

IL-8

Interleukin-8

References

  1. Apopa PL, Qian Y, Shao R, Guo NL, Schwegler-Berry D, Pacurari M, et al. Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling. Part Fibre Toxicol. 2009;6:1.PubMedCrossRefGoogle Scholar
  2. Balciunas M, Bagdonaite L, Samalavicius R, Baublys A. Markers of endothelial dysfunction after cardiac surgery: soluble forms of vascular-1 and intercellular-1 adhesion molecules. Medicina (Kaunas). 2009;45(6):434–9.Google Scholar
  3. Chen JR, Shankar K, Nagarajan S, Badger TM, Ronis MJ. Protective effects of estradiol on ethanol-induced bone loss involve inhibition of reactive oxygen species generation in osteoblasts and downstream activation of the extracellular signal-regulated kinase/signal transducer and activator of transcription 3/receptor activator of nuclear factor-kappaB ligand signaling cascade. J Pharmacol Exp Ther. 2008a;324(1):50–9.PubMedCrossRefGoogle Scholar
  4. Chen L, Yokel RA, Hennig B, Toborek M. Manufactured aluminum oxide nanoparticles decrease expression of tight junction proteins in brain vasculature. J Neuroimmune Pharmacol. 2008b;3(4):286–95.PubMedCrossRefGoogle Scholar
  5. De Berardis B, Civitelli G, Condello M, Lista P, Pozzi R, Arancia G, et al. Exposure to ZnO nanoparticles induces oxidative stress and cytotoxicity in human colon carcinoma cells. Toxicol Appl Pharmacol. 2010;246(3):116–27.CrossRefGoogle Scholar
  6. Dossumbekova A, Berdyshev EV, Gorshkova I, Shao Z, Li C, Long P, et al. Vanden Hoek TL. Akt activates NOS3 and separately restores barrier integrity in H2O2-stressed human cardiac microvascular endothelium. Am J Physiol Heart Circ Physiol. 2008;295(6):H2417–26.PubMedCrossRefGoogle Scholar
  7. Fahmy B, Cormier SA. Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicol In Vitro. 2009;23(7):1365–71.PubMedCrossRefGoogle Scholar
  8. Gerszten RE, Garcia-Zepeda EA, Lim YC, Yoshida M, Ding HA, Gimbrone Jr MA, et al. MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature. 1999;398(6729):718–23.PubMedCrossRefGoogle Scholar
  9. Gojova A, Guo B, Kota RS, Rutledge JC, Kennedy IM, Barakat AI. Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: effect of particle composition. Environ Health Perspect. 2007;115(3):403–9.PubMedCrossRefGoogle Scholar
  10. Gojova A, Lee JT, Jung HS, Guo B, Barakat AI, Kennedy IM. Effect of cerium oxide nanoparticles on inflammation in vascular endothelial cells. Inhal Toxicol. 2009;21 Suppl 1:123–30.PubMedCrossRefGoogle Scholar
  11. Heng BC, Zhao X, Xiong S, Ng KW, Boey FY, Loo JS. Toxicity of zinc oxide (ZnO) nanoparticles on human bronchial epithelial cells (BEAS-2B) is accentuated by oxidative stress. Food Chem Toxicol. 2010;48(6):1762–6.PubMedCrossRefGoogle Scholar
  12. Holman RG, Maier RV. Oxidant-induced endothelial leak correlates with decreased cellular energy levels. Am Rev Respir Dis. 1990;141(1):134–40.PubMedGoogle Scholar
  13. Houle F, Huot J. Dysregulation of the endothelial cellular response to oxidative stress in cancer. Mol Carcinog. 2006;45(6):362–7.PubMedCrossRefGoogle Scholar
  14. Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro. 2005;19(7):975–83.PubMedCrossRefGoogle Scholar
  15. Hussain S, Boland S, Baeza-Squiban A, Hamel R, Thomassen LC, Martens JA, et al. Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: role of particle surface area and internalized amount. Toxicology. 2009;260(1–3):142–9.PubMedCrossRefGoogle Scholar
  16. Imai-Sasaki R, Kainoh M, Ogawa Y, Ohmori E, Asai Y, Nakadate T. Inhibition by beraprost sodium of thrombin-induced increase in endothelial macromolecular permeability. Prostaglandins Leukot Essent Fatty Acids. 1995;53(2):103–8.PubMedCrossRefGoogle Scholar
  17. Karlsson HL, Cronholm P, Gustafsson J, Moller L. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol. 2008;21(9):1726–32.PubMedCrossRefGoogle Scholar
  18. Kennedy IM, Wilson D, Barakat AI. Uptake and inflammatory effects of nanoparticles in a human vascular endothelial cell line. Res Rep Health Eff Inst. 2009;136:3–32.PubMedGoogle Scholar
  19. Kim IS, Baek M, Choi SJ. Comparative cytotoxicity of Al2O3, CeO2, TiO2 and ZnO nanoparticles to human lung cells. J Nanosci Nanotechnol. 2010;10(5):3453–8.PubMedCrossRefGoogle Scholar
  20. Lai JC, Lai MB, Jandhyam S, Dukhande VV, Bhushan A, Daniels CK, et al. Exposure to titanium dioxide and other metallic oxide nanoparticles induces cytotoxicity on human neural cells and fibroblasts. Int J Nanomedicine. 2008;3(4):533–45.PubMedGoogle Scholar
  21. Lum H, Roebuck KA. Oxidant stress and endothelial cell dysfunction. Am J Physiol Cell Physiol. 2001;280(4):C719–41.PubMedGoogle Scholar
  22. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1–2):55–63.PubMedCrossRefGoogle Scholar
  23. Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113(7):823–39.PubMedCrossRefGoogle Scholar
  24. Packard RR, Libby P. Inflammation in atherosclerosis: from vascular biology to biomarker discovery and risk prediction. Clin Chem. 2008;54(1):24–38.PubMedCrossRefGoogle Scholar
  25. Rosas-Hernandez H, Jimenez-Badillo S, Martinez-Cuevas PP, Gracia-Espino E, Terrones H, Terrones M, et al. Effects of 45-nm silver nanoparticles on coronary endothelial cells and isolated rat aortic rings. Toxicol Lett. 2009;191(2–3):305–13.PubMedCrossRefGoogle Scholar
  26. Savage N, Thomas TA, Duncan JS. Nanotechnology applications and implications research supported by the US Environmental Protection Agency STAR grants program. J Environ Monit. 2007;9(10):1046–54.PubMedCrossRefGoogle Scholar
  27. van Buul JD, Hordijk PL. Endothelial signalling by Ig-like cell adhesion molecules. Transfus Clin Biol. 2008;15(1–2):3–6.PubMedGoogle Scholar
  28. Veranth JM, Kaser EG, Veranth MM, Koch M, Yost GS. Cytokine responses of human lung cells (BEAS-2B) treated with micron-sized and nanoparticles of metal oxides compared to soil dusts. Part Fibre Toxicol. 2007;4:2.PubMedCrossRefGoogle Scholar
  29. Wang H, Wick RL, Xing B. Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environ Pollut. 2009;157(4):1171–7.PubMedCrossRefGoogle Scholar
  30. Yu M, Mo Y, Wan R, Chien S, Zhang X, Zhang Q. Regulation of plasminogen activator inhibitor-1 expression in endothelial cells with exposure to metal nanoparticles. Toxicol Lett. 2010;195(1):82–9.PubMedCrossRefGoogle Scholar
  31. Yuan JH, Chen Y, Zha HX, Song LJ, Li CY, Li JQ, et al. Determination, characterization and cytotoxicity on HELF cells of ZnO nanoparticles. Colloids Surf B Biointerfaces. 2010;76(1):145–50.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jing Sun
    • 1
  • Shaochuang Wang
    • 2
  • Dong Zhao
    • 1
  • Fei Han Hun
    • 1
  • Lei Weng
    • 1
  • Hui Liu
    • 3
  1. 1.Shanghai First Maternity and Infant HospitalTongji UniversityShanghaiChina
  2. 2.Department of Hepatobiliary Pancreatic SurgeryThe Huai’an First People’s Hospital Affiliated to Nanjin Medical UniversityJiangsuPeople’s Republic of China
  3. 3.Eastern Hepatobiliary Surgery HospitalSecond Military Medical UniversityShanghaiPeople’s Republic of China

Personalised recommendations