Cell Biology and Toxicology

, Volume 26, Issue 5, pp 481–498 | Cite as

Roles of oxidative stress in signaling and inflammation induced by particulate matter

  • Flavia Mazzoli-Rocha
  • Silviane Fernandes
  • Marcelo Einicker-Lamas
  • Walter Araújo Zin


This review reports the role of oxidative stress in impairing the function of lung exposed to particulate matter (PM). PM constitutes a heterogeneous mixture of various types of particles, many of which are likely to be involved in oxidative stress induction and respiratory diseases. Probably, the ability of PM to cause oxidative stress underlies the association between increased exposure to PM and exacerbations of lung disease. Mostly because of their large surface area, ultrafine particles have been shown to cause oxidative stress and proinflammatory effects in different in vivo and in vitro studies. Particle components and surface area may act synergistically inducing lung inflammation. In this vein, reactive oxygen species elicited upon PM exposure have been shown to activate a number of redox-responsive signaling pathways and Ca2+ influx in lung target cells that are involved in the expression of genes that modulate relevant responses to lung inflammation and disease.


Air pollution Cell signaling Free radicals Inflammation Oxidative stress Particulate matter 


  1. Abidi P, Afaq F, Arif JM, Lohani M, Rahman Q. Chrysotile-mediated imbalance in the glutathione redox system in the development of pulmonary injury. Toxicol Lett. 1999;106:31–9.PubMedCrossRefGoogle Scholar
  2. Adler V, Yin Z, Tew KD, Ronai Z. Role of redox potential and reactive oxygen species in stress signaling. Oncogenese. 1999;18:6104–11.CrossRefGoogle Scholar
  3. Afaq F, Abidi P, Rahman Q. N-acetyl L-cysteine attenuates oxidant-mediated toxicity induced by chrysotile fibers. Toxicol Lett. 2000;117:53–60.PubMedCrossRefGoogle Scholar
  4. Anderson HR, Bremmer SA, Atkinson RW, Harrison RM, Walters S. Particulate matter and daily mortality and hospital admissions in the west midlands conurbation of the United Kingdom: associations with fine and coarse particles, black smoke and sulphate. Occup Environ Med. 2001;58:504–10.PubMedCrossRefGoogle Scholar
  5. Andreadis AA, Hazen SL, Comhair SAA, Erzurum SC. Role of reactive oxygen and nitrogen species (ROS/RNS) in lung injury and diseases. Free Radic Biol Med. 2003;35:213–25.PubMedCrossRefGoogle Scholar
  6. Anseth JW, Goffin AJ, Fuller GG, Ghio AJ, Kao PN, Upadhyay D. Lung surfactant gelation induced by epithelial cells exposed to air pollution or oxidative stress. Am J Respir Cell Mol Biol. 2005;33:161–8.PubMedCrossRefGoogle Scholar
  7. Arbex MA, Böhm GM, Saldiva PHN, Conceição GMS. Assessment of the effects of sugar cane plantation burning on daily counts of inhalation therapy. J Air Waste Manage Assoc. 2000;50:1745–9.Google Scholar
  8. Arbex MA, Cançado JED, Pereira LAA, Braga ALF, Saldiva PHN. Queima de biomassa e efeitos sobre a saúde. J Bras Pneumol. 2004;30:158–75.CrossRefGoogle Scholar
  9. Arbex MA, Martins LC, De Oliveira RC, Pereira LA, Cançado JE, Saldiva PH, et al. Air pollution from biomass burning and asthma hospital admissions in a sugar cane plantation area in Brazil. J Epidemiol Community Health. 2007;61:395–400.PubMedCrossRefGoogle Scholar
  10. Arredouani MS, Palecanda A, Koziel H, Huang Y-C, Imrich A, Sulahian TH, et al. MARCO is the major binding receptor for unopsonized particles and bacteria on human alveolar macrophages. J Immunol. 2005;175:6058–64.PubMedGoogle Scholar
  11. ATSDR, Agency for Toxic Substances and Disease Registry. Health consultation—dioxin and polycyclic aromatic hydrocarbon chemical signatures (fingerprints) in sediments 2006;
  12. Baeza-Squiban A, Bonvallot V, Boland S, Marano F. Airborne particles evoke an inflammatory response in human airway epithelium. Activation of transcription factors. Cell Biol Med. 1999;31:1132–8.Google Scholar
  13. Bagci C, Bozkurt AI, Cakmak EA, Can S, Cengiz B. Blood lead levels of the battery and exhaust workers and their pulmonary function tests. Int J Clin Pract. 2004;58:568–72.PubMedCrossRefGoogle Scholar
  14. Bateson TF, Schwartz J. Children’s response to air pollutants. J Toxicol Environ Health A. 2008;71:238–43.PubMedCrossRefGoogle Scholar
  15. Baulig A, Garlatti M, Bonvallot V, Marchand A, Barouki R, Marano F, et al. Involvement of reactive oxygen species in the metabolic pathways triggered by diesel exhaust particles in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2003;285:L671–9.PubMedGoogle Scholar
  16. Beamer CA, Holian A. Scavenger receptor class A type I/II (CD204) null mice fail to develop fibrosis following silica exposure. Am J Physiol Lung Cell Mol Physiol. 2005;289:L186–95.PubMedCrossRefGoogle Scholar
  17. Becher R, Bucht A, Ovrevik J, Hongslo JK, Dahlman HJ, Samuelsen JT, et al. Involvement of NADPH oxidase and iNOS in rodent pulmonary cytokine responses to urban air and mineral particles. Inhal Toxicol. 2007;19:645–55.PubMedCrossRefGoogle Scholar
  18. Becker S, Soukup JM, Gallagher JE. Differential particulate air pollution induced oxidant stress in human granulocytes, monocytes and alveolar macrophages. Toxicol In Vitro. 2002;16:209–18.PubMedCrossRefGoogle Scholar
  19. Berridge MJ, Bootman MD, Lipp P. Calcium—a life and death signal. Nature. 1998;395:645–8.PubMedCrossRefGoogle Scholar
  20. Bérubé K, Balharry D, Sexton K, Koshy L, Jones T. Combustion-derived nanoparticles: mechanisms of pulmonary toxicity. Clin Exp Pharmacol Physiol. 2007;34:1044–50.PubMedCrossRefGoogle Scholar
  21. Bonner JC, Rice AB, Moomaw CR, Morgan DL. Airway fibrosis in rats induced by vanadium pentoxide. Am J Physiol Lung Cell Mol Physiol. 2000;278:L209–16.PubMedGoogle Scholar
  22. Bonvallot V, Baeza-Squiban A, Baulig A, Brulant S, Boland S, Muzeau F, et al. Organic compounds from diesel exhaust particles elicit a proinflammatory response in human airway epithelial cells and induce cytochrome p450 1A1 expression. Am J Respir Cell Mol Biol. 2001;25:515–21.PubMedGoogle Scholar
  23. Boojar MM, Goodarzi F. A longitudinal follow-up of pulmonary function and respiratory symptoms in workers exposed to manganese. J Occup Environ Med. 2002;44:282–90.PubMedCrossRefGoogle Scholar
  24. Braback L, Forsberg B. Does traffic exhaust contribute to the development of asthma and allergic sensitization in children: findings from recent cohort studies. Environ Health. 2009;8:17.PubMedCrossRefGoogle Scholar
  25. Braga ALF, Zanobetti A, Schwartz J. Do respiratory epidemics confound the association between air pollution and daily deaths? Eur Respir J. 2000;16:723–8.PubMedCrossRefGoogle Scholar
  26. Braga ALF, Saldiva PHN, Pereira LAA, Menezes JJC, Conceição GMS, Lin CL, et al. Health effects of air pollution exposure on children and adolescents in Sao Paulo, Brazil. Pediatr Pulmonol. 2001;31:106–13.PubMedCrossRefGoogle Scholar
  27. Brown DM, Stone V, Findlay P, MacNee W, Donaldson K. Increased inflammation and intracellular calcium caused by ultrafine carbon black is independent of transition metals or other soluble components. Occup Environ Med. 2000;57:685–91.PubMedCrossRefGoogle Scholar
  28. Brown DW, Wilson MR, MacNee W, Stone V, Donaldson K. Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol. 2001;175:191–9.PubMedCrossRefGoogle Scholar
  29. Brown DM, Donaldson K, Borm PJ, Schins RP, Dehnhardt M, Gilmour P, et al. Calcium and ROS-mediated activation of transcription factors and TNF-alpha cytokine gene expression in macrophages exposed to ultrafine particles. Am J Physiol Lung Cell Mol Physiol. 2004;286:L344–53.PubMedCrossRefGoogle Scholar
  30. Brown DM, Hutchison L, Donaldson K, Stone V. The effects of PM10 particles and oxidative stress on macrophages and lung epithelial cells: modulating effects of calcium-signaling antagonists. Am J Physiol Lung Cell Mol Physiol. 2007;292:L1444–51.PubMedCrossRefGoogle Scholar
  31. Cançado JED, Saldiva PHN, Pereira LAA, Lara LBLS, Artaxo P, Martinelli LA, et al. The impact of sugar cane-burning emissions on the respiratory system of children and the elderly. Environ Health Perspect. 2006;114:725–9.PubMedCrossRefGoogle Scholar
  32. Cardile V, Renis R, Scifo C, Lombardoa L, Gulino R, Mancari B, et al. Behaviour of the new asbestos amphibole fluoro-edenite in different lung cell systems. Int J Biochem Cell Biol. 2004;36:849–60.PubMedCrossRefGoogle Scholar
  33. Carpentier I, Declercq W, Malinin NL, Wallach D, Fiers W, Beyaert R. TRAF2 plays a dual role in NF-kappaB-dependent gene activation by mediating the TNF-induced activation of p38 MAPK and IkappaB kinase pathways. FEBS Lett. 1998;425:195–8.PubMedCrossRefGoogle Scholar
  34. Castaño-Vinyals C, D’errico A, Malats N, Kogevinas M. Biomarkers of exposure to polycyclic aromatic hydrocarbons from environment air pollution. Occup Environ Med. 2004;61:e12.PubMedCrossRefGoogle Scholar
  35. Churg A, Xie C, Wang X, Vincent R, Wang RD. Air pollution particles activate NF-κB on contact with airway epithelial cell surfaces. Toxicol Appl Pharmacol. 2005;208:37–45.PubMedCrossRefGoogle Scholar
  36. Cifuentes LA, Vega J, Köpfer K. Effect of the fine fraction of particulate matter versus the coarse mass and other pollutants in daily mortality in Santiago, Chile. J Air Waste Manage Assoc. 2000;50:1287–98.Google Scholar
  37. Clarke RW, Catalano PJ, Krishna Murty GG, Sioutas C, Paulaukis J, Coull B, et al. Urban air particulate inhalation alters pulmonary function and induces pulmonary inflammation in a rodent model of chronic bronchitis. Toxicol. 1999;11:637–56.Google Scholar
  38. Clarke RW, Coull B, Reinisch U, Catalano PJ, Killingsworth C, Koutrakis P, et al. Inhaled concentrated ambient particles are associated with hematological and bronchoalveolar lavage changes in canines. Environ Health Perspect. 2000;108:1179–87.PubMedCrossRefGoogle Scholar
  39. Comhair SA, Bhathena PR, Dweik RA, Kavuru M, Erzurum SC. Rapid loss of superoxide dismutase activity during antigen-induced asthmatic response. Lancet. 2000;355:624.PubMedCrossRefGoogle Scholar
  40. Comhair SA, Bhathena PR, Farver C, Thunnissen FB, Erzurum SC. Extracellular glutathione peroxidase induction in asthmatic lungs: evidence for redox regulation of expression in human airway epithelial cells. FASEB J. 2001;15:70–8.PubMedCrossRefGoogle Scholar
  41. Conway JD, Bortolotta T, Abdullah LH, Davis CW. Regulation of mucin secretion from human bronchial epithelial cells grown in murine hosted xenografts. Am J Physiol, Lung Cell Mol Physiol. 2003;284:L945–54.Google Scholar
  42. Cupitt LT, Glen WG, Lewtas J. Exposure and risk from ambient particle-bound pollution in an airshed dominated by residential wood combustion and mobile sources. Environ Health Perspect. 1994;102:75–84.PubMedCrossRefGoogle Scholar
  43. Cuschieri J, Gourlay D, Garcia I, Jelacie S, Maier RV. Slow channel calcium inhibition blocks proinflammatory gene signaling and reduces macrophage responsiveness. J Trauma. 2002;52:434–42.PubMedCrossRefGoogle Scholar
  44. Dagher Z, Garçon G, Billet S, Gosset P, Ledoux F, Courcot D, et al. Activation of different pathways of apoptosis by air pollution particulate matter (PM2.5) in human epithelial lung cells (L132) in culture. Toxicol. 2006;225:12–24.CrossRefGoogle Scholar
  45. Dagher Z, Garçon G, Billet S, Verdin A, Ledoux F, Courcot D, et al. Role of nuclear factor-kappa B activation in the adverse effects induced by air pollution particulate matter (PM2.5) in human epithelial lung cells (L132) in culture. J Appl Toxicol. 2007;27:284–90.PubMedCrossRefGoogle Scholar
  46. Dales R, Miller D, Ruest K, Guay M, Judek S. Airborne endotoxin is associated with respiratory illness in the first 2 years of life. Environ Health Perspect. 2006;114:610–4.PubMedCrossRefGoogle Scholar
  47. Dominici F, Peng RD, Zeger SL, White RH, Samet JM. Particulate air pollution and mortality in the United States: did the risks change from 1987 to 2000? Am J Epidemiol. 2007;166:880–8.PubMedCrossRefGoogle Scholar
  48. Donaldson K, Stone V. Current hypotheses on the mechanisms of toxicity of ultrafine particles. Ann Ist Super Sanità. 2003;39:405–10.PubMedGoogle Scholar
  49. Donaldson K, Stone V, Clouter A, Renwick L, MacNee W. Ultrafine particles. Occup Environ Med. 2001;58:211–6.PubMedCrossRefGoogle Scholar
  50. Donaldson K, Brown D, Clouter A, Duffin R, MacNee W, Renwick L, et al. The pulmonary toxicology of ultrafine particles. J Aerosol Med. 2002;15:213–20.PubMedCrossRefGoogle Scholar
  51. Donaldson K, Stone V, Borm PJA, Jimenez LA, Gilmour PS, Schins RPF, et al. Oxidative stress and calcium signaling in the adverse effects of environmental particles (PM10). Free Radic Biol Med. 2003;34:1369–82.PubMedCrossRefGoogle Scholar
  52. Donaldson K, Tran L, Jimenez LA, Duffin R, Newby DE, Mills N, et al. Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Part Fibre Toxicol. 2005;2:10.PubMedCrossRefGoogle Scholar
  53. Dopp E, Yadav S, Ansari FA, Bhattacharya K, von Recklinghausen U, Rauen U, et al. ROS-mediated genotoxicity of asbestos-cement in mammalian lung cells in vitro. Part Fibre Toxicol. 2005;6:2–9.Google Scholar
  54. Douwes J, Zuidhof A, Doekes G, van der Zee S, Wouters I, Boezen HM, et al. (1→3)-β-D-Glucan and endotoxin in house dust and peak flow variability in children. Am J Respir Crit Care Med. 2000;162:1348–54.PubMedGoogle Scholar
  55. Dreher K. Particulate matter physicochemistry and toxicology; in search of causality—a critical perspective. Inhal Toxicol. 2000;12:45–57.CrossRefGoogle Scholar
  56. Duffin R, Tran CL, Clouter A, Brown DM, MacNee W, Stone V, et al. The importance of surface area and specific reactivity in the acute pulmonary inflammatory response to particles. Ann Occup Hyg. 2002;46:242–5.Google Scholar
  57. Duffin R, Mills NL, Donaldson K. Nanoparticles—a thoracic toxicology perspective. Yonsei Med J. 2007a;48:561–72.PubMedCrossRefGoogle Scholar
  58. Duffin R, Tran L, Brown D, Stone V, Donaldson K. Proinflammogenic effects of low-toxicity and metal nanoparticles in vivo and in vitro: highlighting the role of particle surface area and surface reactivity. Inhal Toxicol. 2007b;19:849–56.PubMedCrossRefGoogle Scholar
  59. Dusseldorp A, Kruise H, Brunekreef B, Hofschreuder P, Meer G, Van Oudvorst AB. Associations of PM10 and airborne iron with respiratory health of adults living near a steel factory. Am J Respir Crit Care Med. 1995;152:1932–9.PubMedGoogle Scholar
  60. Dworski R. Oxidant stress in asthma. Thorax. 2000;55:S51–3.PubMedCrossRefGoogle Scholar
  61. Dye JA, Adler KB, Richards JH, Dreher KL. Role of soluble metals in oil fly ash-induced airway epithelial injury and cytokine gene expression. Am J Physiol. 1999;277:L498–510.PubMedGoogle Scholar
  62. Ermak G, Davies KJA. Calcium and oxidative stress: from cell signaling to cell death. Mol Immunol. 2002;38:713–21.PubMedCrossRefGoogle Scholar
  63. Etzel RA. How environmental exposure influence the development and exacerbation of asthma. Pediatrics. 2003;112:233–9.PubMedGoogle Scholar
  64. Fahmy B, Cormier SA. Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicology In Vitro. 2009;23:1365–71.PubMedCrossRefGoogle Scholar
  65. Farhat SCL, Paulo RLP, Shimoda TM, Conceição GMS, Lin CA, Braga ALF, et al. Effect of air pollution on pediatric respiratory emergency room visits and hospital admissions. Braz J Med Biol Res. 2005;38:227–35.PubMedCrossRefGoogle Scholar
  66. Faux SP, Howden PJ, Levy LS. Iron-dependent formation of 8-hydroxydeoxyguanosine in isolated DNA and mutagenicity in Salmonella typhimurium TA102 induced by crocidolite. Carcinogenesis. 1994;15:1749–51.PubMedCrossRefGoogle Scholar
  67. Forman HJ, Torres M. Redox signaling in macrophages. Mol Aspects Med. 2001;22:189–216.PubMedCrossRefGoogle Scholar
  68. Frye C, Hoelscher B, Cyrys J, Wjst M, Wichmann HE, Heinrich J. Association of lung function with declining ambient air pollution. Environ Health Perspect. 2003;111:383–7.PubMedCrossRefGoogle Scholar
  69. Fusco D, Forastiere F, Michelozzi P, Spadea T, Ostro B, Arcà M, et al. Air pollution and hospital admissions for respiratory conditions in Rome, Italy. Eur Respir J. 2001;17:1143–50.PubMedCrossRefGoogle Scholar
  70. Gehring U, Bolte G, Borte M, Bischof W, Fahlbusch B, Wichmann HE, et al. Exposure to endotoxin decreases the risk of atopic eczema in infancy: a cohort study. J Allergy Clin Immunol. 2001;108:847–54.PubMedCrossRefGoogle Scholar
  71. Ghio AJ, Devlin RB. Inflammatory lung injury after bronchial instillation of air pollution particles. Am J Respir Crit Care Med. 2001;164:704–8.PubMedGoogle Scholar
  72. Ghio AJ, Kennedy TP, Stonehuerner J, Carter JD, Skinner KA, Parks DA, et al. Iron regulates xanthine oxidase activity in the lung. Am J Physiol Lung Cell Mol Physiol. 2002;283:L563–72.PubMedGoogle Scholar
  73. Ghio AJ, Kim C, Devlin RB. Concentrated ambient air particles induce mild pulmonary inflammation in healthy human volunteers. Am J Respir Crit Care Med. 2000;162:981–8.PubMedGoogle Scholar
  74. Gilmour PS, Rahman I, Hayashi S, Hogg JC, Donaldson K, MacNee W. Adenoviral E1A primes alveolar epithelial cells to PM10-induced transcription of interleukin-8. Am J Physiol, Lung Cell Mol Physiol. 2001;281:L598–606.Google Scholar
  75. Gilmour MI, Jaakkola MS, London SJ, Nel AE, Rogers CA. How exposure to environmental tobacco smoke, outdoor air pollutants, and increased pollen burdens influences the incidence of asthma. Environ Health Perspect. 2006;114:627–33.PubMedCrossRefGoogle Scholar
  76. Goldsmith C-A, Frevert C, Imrich A, Sioutas C, Kobzik L. Alveolar macrophage interaction with air pollution particulates. Environ Health Perspect. 1997;105:1191–5.PubMedCrossRefGoogle Scholar
  77. Goldsmith CA, Imrich A, Danaee H, Ning YY, Kobzik L. Analysis of air pollution particulate-mediated oxidant stress in alveolar macrophages. J Toxicol Environ Health A. 1998;54:529–45.PubMedCrossRefGoogle Scholar
  78. González-Flecha B. Oxidant mechanism in response to ambient air particles. Mol Aspects Med. 2004;25:169–82.PubMedCrossRefGoogle Scholar
  79. Grievink L, Smit HA, Brunekreef B. Anti-oxidants and air pollution in relation to indicators of asthma and COPD: a review of the current evidence. Clin Exp Allergy. 2000;30:1344–54.PubMedCrossRefGoogle Scholar
  80. Grover AK, Samson SE, Fomin VP. Peroxide inactivates calcium pumps in pig coronary artery. Am J Physiol Heart Circ Physiol. 1992;263:H537–43.Google Scholar
  81. Gurgueira SA, Lawrence J, Coull B, Krishna Murthy GG, Gonzáles-Flecha B. Rapid increases in the steady-state concentration of reactive oxygen species in the lungs and heart after particulate air pollution inhalation. Environ Health Perspect. 2002;110:749–55.PubMedCrossRefGoogle Scholar
  82. Haller T, Ortmayr J, Friedrich F, Volkl H, Dielt P. Dynamics of surfactant release in alveolar type II cells. Proc Natl Acad Sci USA. 1998;95:1579–84.PubMedCrossRefGoogle Scholar
  83. Harrison RM, Yin J. Particulate matter in the atmosphere: which particle properties are important for its effects on health? Sci Total Environ. 2000;249:85–101.PubMedCrossRefGoogle Scholar
  84. Harrison RM, Shi JP, Xi S, Khan A, Mark D, Kinnersley R, et al. Measurement of number, mass and size distribution of particles in the atmosphere. Phil Trans R Soc Lond A. 2000;358:2567–80.CrossRefGoogle Scholar
  85. Hashimoto S, Gon Y, Takeshita I, Matsumoto K, Jibiki I, Takizawa H, et al. Diesel exhaust particles activate p38 MAP kinase to produce interleukin 8 and RANTES by human bronchial epithelial cells and N-acetylcysteine attenuates p38 map kinase activation. Am J Respir Crit Care Med. 2000;161:280–5.PubMedGoogle Scholar
  86. Helfand WH, Lazarus J, Theerman P. Donora, Pennsylvania: an environmental disaster of the 20th century. Am J Public Health. 2001;91:553.PubMedCrossRefGoogle Scholar
  87. Heming TA, Dave SK, Tuazon DM, Chopra AK, Peterson JW, Bidani A. Effects of extracellular pH on tumor necrosis factor-α production by resident alveolar macrophages. Clin Sci. 2001;101:267–74.PubMedCrossRefGoogle Scholar
  88. Hitchins J, Morawska L, Wolff R, Gilbert D. Concentrations of submicrometre particles from vehicle emissions near a major road. Atmosph Environ. 2000;34:51–9.CrossRefGoogle Scholar
  89. Hiura TS, Kaszubowski MP, Li N, Nel AE. Chemicals in diesel exhaust particles generate reactive oxygen radicals and induce apoptosis in macrophages. J Immunol. 1999;163:5582–91.PubMedGoogle Scholar
  90. Hong YC, Hwang SS, Kim JH, Lee KH, Lee HJ, Lee KH, et al. Metals in particulate pollutants affect peak expiratory flow of schoolchildren. Environ Health Perspect. 2007;115:430–4.PubMedCrossRefGoogle Scholar
  91. Howden PJ, Faux SP. Fibre induced lipid peroxidation leads to DNA adduct formation in Salmonella typhimurium TA104 and rat lung fibroblast. Carcinogenesis. 1996;17:413–9.PubMedCrossRefGoogle Scholar
  92. Hoyal CR, Giron-Calle J, Forman HJ. The alveolar macrophage as a model of calcium signaling in oxidative stress. J Toxicol Environ Health B Crit Rev. 1998;1:117–34.PubMedGoogle Scholar
  93. Hwang BF, Lee YL, Lin YC, Jaakkola JJ, Guo YL. Traffic related air pollution as a determinant of asthma among Taiwanese school children. Thorax. 2005;60:467–73.PubMedCrossRefGoogle Scholar
  94. Ichinose T, Yajima Y, Nagashima M, Takeshita S, Nagamachi Y, Sagai M. Lung carcinogenesis and formation of 8-hydroxy-deoxyguanosine in mice by diesel exhaust particles. Carcinogenesis. 1997;18:185–92.PubMedCrossRefGoogle Scholar
  95. Iles KE, Forman HJ. Macrophage signaling and respiratory burst. Immunol Res. 2002;26:95–105.PubMedCrossRefGoogle Scholar
  96. Inoue K-I, Takano H, Yanagisawa R, Sakurai M, Ichinose T, Sadakane K, et al. Effects of nano particles on antigen-related airway inflammation in mice. Respir Res. 2005;6:106.PubMedCrossRefGoogle Scholar
  97. Inoue K-I, Takano H, Yanagisawa R, Hirano S, Sakurai M, Shimada A, et al. Effects of airway exposure to nanoparticles on lung inflammation induced by bacterial endotoxin in mice. Environ Health Perspect. 2006;114:1325–30.PubMedCrossRefGoogle Scholar
  98. Jimenez LA, Thompson J, Brown DA, Rahman I, Antonicelli F, Duffin R, et al. Activation of NF-kappaB by PM10 occurs via an iron-mediated mechanism in the absence of IkappaB degradation. Toxicol Appl Pharmacol. 2000;166:101–10.PubMedCrossRefGoogle Scholar
  99. Johnson AW, Aderele WI. The association of household pollutants and socio-economic risk factors with the short-term outcome of acute lower respiratory infections in hospitalized pre-school Nigerian children. Ann Trop Paediatr. 1992;12:421–32.PubMedGoogle Scholar
  100. Kampa M, Castanas E. Human health effects of air pollution. Environ Pollut. 2007;151:362–7.PubMedCrossRefGoogle Scholar
  101. Kan H, Heiss G, Rose KM, Whitsel E, Lurmann F, London SJ. Traffic exposure and lung function in adults: the atherosclerosis risk in communities study. Thorax. 2007;62:873–9.PubMedCrossRefGoogle Scholar
  102. Karin M, Liu Z, Zandi E. AP-1 function and regulation. Curr Opin Cell Biol. 1997;9:240–6.PubMedCrossRefGoogle Scholar
  103. Kasprzak KS, Sunderman Jr FW, Salnikow K. Nickel carcinogenesis. Mutat Res. 2003;533:67–97.PubMedGoogle Scholar
  104. Kawasaki S, Takizawa H, Takami K, Desaki M, Okazaki H, Kasama T, et al. Benzene-extracted components are important for the major activity of diesel exhaust particles effect on interleukin-8 gene expression in human bronchial epithelial cells. Am J Respir Cell Mol Biol. 2001;24:419–26.PubMedGoogle Scholar
  105. Kelsall JE, Samet JM, Zeger SL, Xu J. Air pollution and mortality in Philadelphia, 1974–1988. Am J Epidemiol. 1997;146:750–62.PubMedGoogle Scholar
  106. Kennedy T, Ghio AJ, Reed W, Samet J, Zagorski J, Qualy J, et al. Copper-dependent inflammation and nuclear factor-kappaB activation by particulate air pollution. Am J Respir Cell Mol Biol. 1998;19:366–78.PubMedGoogle Scholar
  107. Kittelson DB, Watts WF, Johnson JP. Nanoparticle emissions on Minnesota highways. Atmospheric Environ. 2004;38:9–19.CrossRefGoogle Scholar
  108. Ko FWS, Tam W, Wong TW, Chan DPS, Tung AH, Lai CKW, et al. Temporal relationship between air pollutants and hospital admissions for chronic obstructive pulmonary disease in Hong Kong. Thorax. 2007a;62:779–84.CrossRefGoogle Scholar
  109. Ko FWS, Tam W, Wong TW, Lai CKW, Wong GWK, Leung TF, et al. Effects of air pollution on asthma hospitalization rates in different age groups in Hong Kong. Clin Exp Allergy. 2007b;37:1312–9.PubMedCrossRefGoogle Scholar
  110. Kobzik L. Lung macrophage uptake of unopsonized environmental particulates. Role of scavenger-type receptors. J Immunol. 1995;155:367–76.PubMedGoogle Scholar
  111. Kopnin PB, Kravchenko IV, Furalyov VA, Pylev LN, Kopnin BP. Cell type-specific effects of asbestos on intracellular ROS levels, DNA oxidation and G1 cell cycle checkpoint. Oncogene. 2004;23:8834–40.PubMedCrossRefGoogle Scholar
  112. Kumagai Y, Arimoto T, Shinyashiki M, Shimojo N, Nakai Y, Yoshikawa T, et al. Generation of reactive oxygen species during interaction of diesel exhaust particle components with NADPH-cytochrome P450 reductase and involvement of the bioactivation in the DNA damage. Free Radic Biol Med. 1997;22:479–87.PubMedCrossRefGoogle Scholar
  113. Kunii O, Kanagawa S, Yajima I, Hisamatsu Y, Yamamura S, Amagai T, et al. The 1997 haze disaster in Indonesia: its air quality and health effects. Arch Environ Health. 2002;57:16–22.PubMedCrossRefGoogle Scholar
  114. Kwiatkowska K, Sobota A. Signaling pathways in phagocytosis. BioEssays. 1999;21:422–31.PubMedCrossRefGoogle Scholar
  115. Laden F, Hart JE, Smith TJ, Davis ME, Garshick E. Cause-specific mortality in the unionized U.S. trucking industry. Environ Health Perspect. 2007;115:1192–6.PubMedCrossRefGoogle Scholar
  116. Laden F, Neas LM, Dockery DW, Schwartz J. Association of fine particulate matter from different sources with daily mortality in six U.S. cities. Environ Health Perspect. 2000;108:941–7.PubMedCrossRefGoogle Scholar
  117. Laden F, Schwartz J, Speizer FE, Dockery DW. Reduction in fine particulate air pollution and mortality. Am J Respir Crit Care Med. 2006;173:667–72.PubMedCrossRefGoogle Scholar
  118. Lagorio S, Forastiere F, Pistelli R, Iavarone I, Michelozzi P, Fano V, et al. Air pollution and lung function among susceptible adult subjects: a panel study. Environ Health. 2006;5:11.PubMedCrossRefGoogle Scholar
  119. Laks D, de Oliveira RC, de Andre PA, Macchione M, Lemos M, Faffe D, et al. Composition of diesel particles influences acute pulmonary toxicity: an experimental study in mice. Inhal Toxicol. 2008;20:1037–42.PubMedCrossRefGoogle Scholar
  120. Lansley AB, Sanderson MJ, Dirksen ER. Control of the beat cycle of respiratory tract cilia by Ca2+ and cAMP. Am J Physiol. 1992;263:L232–42.PubMedGoogle Scholar
  121. Lee Y-L, Hsiue T-R, Lee Y-C, Lin Y-C, Guo YL. The association between glutathione S-transferase p1, m1 polymorphisms and asthma in Taiwanese schoolchildren. CHEST. 2005;128:1156–62.PubMedCrossRefGoogle Scholar
  122. Lee SL, Wong WHS, Lau YL. Association between air pollution and asthma admission among children in Hong Kong. Clin Exp Allergy. 2006;36:1138–46.PubMedCrossRefGoogle Scholar
  123. Li XY, Gilmour PS, Donaldson K, MacNee W. In vivo and in vitro proinflammatory effects of particulate air pollution (PM10). Environ Health Perspect. 1997;105:1279–83.PubMedCrossRefGoogle Scholar
  124. Li N, Wang M, Oberley TD, Sempf JM, Nel AE. Comparison of the pro-oxidative and proinflammatory effects of organic diesel exhaust particle chemicals in bronchial epithelial cells and macrophages. J Immunol. 2002;169:4531–41.PubMedGoogle Scholar
  125. Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, et al. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect. 2003;111:455–60.PubMedCrossRefGoogle Scholar
  126. Li N, Xia T, Nel AE. The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic Biol Med. 2008;44:1689–99.PubMedCrossRefGoogle Scholar
  127. Lin CA, Martins MA, Farhat SC, Pope III CA, Conceição GMS, Anastácio VM, et al. Air pollution and respiratory illness of children in Sao Paulo, Brazil. Paediatr Perinat Epidemiol. 1999;13:475–88.PubMedCrossRefGoogle Scholar
  128. Lin M, Stieb DM, Chen Y. Coarse particulate matter and hospitalization for respiratory infections in children younger than 15 years in Toronto: a case-crossover analysis. Pediatrics. 2005;116:e235–40.PubMedCrossRefGoogle Scholar
  129. Logan WPD. Mortality in the London fog incident, 1952. Lancet. 1953;1:336–8.PubMedCrossRefGoogle Scholar
  130. Maki A, Berezesky IK, Fargnoli J, Holbrook NJ, Trump BF. Role of [Ca2+]i in induction of c-fos, c-jun, and c-myc mRNA in rat PTE after oxidative stress. FASEB J. 1992;6:919–24.PubMedGoogle Scholar
  131. Mayer AS, Newman LS. Genetic and environmental modulation of chronic obstructive pulmonary disease. Respir Physiol. 2001;128:3–11.PubMedCrossRefGoogle Scholar
  132. Mazzoli-Rocha F, Magalhães CB, Malm O, Saldiva PHN, Zin WA, Faffe DS. Comparative respiratory toxicity of particles produced by traffic and sugar cane burning. Environ Res. 2008;108:35–41.PubMedCrossRefGoogle Scholar
  133. Mccreanor J, Cullinan P, Nieuwenhuijsen MJ, Stewart-Evans J, Malliarou E, Jarup L, et al. Respiratory effects of exposure to diesel traffic in persons with asthma. N Engl J Med. 2007;357:2348–58.PubMedCrossRefGoogle Scholar
  134. Medina-Ramón M, Zanobetti A, Schwartz J. The effect of ozone and PM10 on hospital admissions for pneumonia and chronic obstructive pulmonary disease: a national multicity study. Am J Epidemiol. 2006;163:579–88.PubMedCrossRefGoogle Scholar
  135. Melén E, Nyberg F, Lindgren CM, Berglind NB, Zucchelli M, Nordling E, et al. interactions between glutathione S-transferase P1, tumor necrosis factor, and traffic-related air pollution for development of childhood allergic disease. Environ Health Perspect. 2008;116:1077–84.PubMedCrossRefGoogle Scholar
  136. Michel O, Kips J, Duchateau J, Vertongen F, Robert L, Collet H, et al. Severity of asthma is related to endotoxin in house dust. Am J Respir Crit Care Med. 1996;154:1641–6.PubMedGoogle Scholar
  137. Minden A, Karin M. Regulation and function of the JNK subgroup of MAP kinases. Biochimica et Biophysica Acta. 1997;1333:F85–104.PubMedGoogle Scholar
  138. Minden A, Lin A, Claret FX, Abo A, Karin M. Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell. 1995;81:1147–57.PubMedCrossRefGoogle Scholar
  139. Moller W, Brown DM, Kreyling W, Stone V. Ultrafine particles cause cytoskeletal dysfunctions in macrophages: role of intracellular calcium. Part Fibre Toxicol. 2005;2:7.PubMedCrossRefGoogle Scholar
  140. Moller P, Folkmann JK, Forchhammer L, Braüner EV, Danielsen PH, Risom L, et al. Air pollution, oxidative damage to DNA, and carcinogenesis. Cancer Lett. 2008;266:84–97.PubMedCrossRefGoogle Scholar
  141. Mondal K, Haskill JS, Becker S. Adhesion and pollution particle-induced oxidant generation is neither necessary nor sufficient for cytokine induction in human alveolar macrophages. Am J Respir Cell Mol Biol. 2000;22:200–8.PubMedGoogle Scholar
  142. Mossman BT, Kamp DW, Weitzman AS. Mechanisms of carcinogenesis and clinical features of asbestos-associated cancers. Cancer Invest. 1996;14:466–80.PubMedCrossRefGoogle Scholar
  143. Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science. 2006;311:622–7.PubMedCrossRefGoogle Scholar
  144. Nemery B, Hoet PHM, Nemmar A. The Meuse Valley fog of 1930: an air pollution disaster. Lancet. 2001;357:704–8.PubMedCrossRefGoogle Scholar
  145. Newton R, Stevens DA, Hart LA, Lindsay M, Adcock IM, Barnes PJ. Superinduction of COX-2 mRNA by cycloheximide and interleukin-1beta involves increased transcription and correlates with increased NF-kappaB and JNK activation. FEBS Lett. 1997;418:135–8.PubMedCrossRefGoogle Scholar
  146. Oberdörster G, Ferin J, Lehnert BE. Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect. 1994;102:173–9.PubMedCrossRefGoogle Scholar
  147. Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113:823–39.PubMedCrossRefGoogle Scholar
  148. Oftedal B, Brunekreef B, Nystad W, Madsen C, Walker SE, Nafstad P. Residential outdoor air pollution and lung function in schoolchildren. Epidemiol. 2008;19:129–37.CrossRefGoogle Scholar
  149. Ohyama M, Otake T, Adachi S, Kobayashi T, Morinaga K. A comparison of the production of reactive oxygen species by suspended particulate matter and diesel exhaust particles with macrophages. Inhal Toxicol. 2007;19:157–60.PubMedCrossRefGoogle Scholar
  150. Overby LH, Nishio S, Weir A, Carver GT, Plopper CG, Philpot RM. Distribution of cytochrome P450 1A1 and NADPH-cytochrome P450 reductase in lungs of rabbits treated with 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin: ultrastructural immunolocalization and in situ hybridization. Mol Pharmacol. 1992;41:1039–46.PubMedGoogle Scholar
  151. Padmavati S, Joshi B. Incidence and etiology of chronic cor pulmonale in Delhi: a necropsy study. Chest. 1964;46:457–63.CrossRefGoogle Scholar
  152. Palecanda A, Paulauskis J, Al-Mutairi E, Imrich A, Qin G, Suzuki H, et al. Role of the scavenger receptor marco in alveolar macrophage binding of unopsonized environmental particles. J Exp Med. 1999;189:1497–506.PubMedCrossRefGoogle Scholar
  153. Park GY, Christman JW. Nuclear factor kappa-B is a promising therapeutic target in inflammatory lung disease. Curr Drug Targets. 2006;7:661–8.PubMedCrossRefGoogle Scholar
  154. Park S, Nam H, Chung N, Park J-D, Lim Y. The role of iron in reactive oxygen species generation from diesel exhaust particles. Toxicol. 2006;20:851–7.Google Scholar
  155. Peel JL, Tolbert PE, Klein M, Metzeger KB, Flanders WD, Todd K, et al. Ambient air pollution and respiratory emergency department visits. Epidemiol. 2005;16:164–74.CrossRefGoogle Scholar
  156. Peel JL, Metzger KB, Klein M, Flanders D, Mulholland JA, Tolbert PE. Ambient air pollution and cardiovascular emergency department visits in potentially sensitive groups. Am J Epidemiol. 2007;165:625–33.PubMedCrossRefGoogle Scholar
  157. Pelclová D, Fenclová Z, Kacer P, Kuzma M, Navrátil T, Lebedová J. Increased 8-isoprostane, a marker of oxidative stress in exhaled breath condensate in subjects with asbestos exposure. Industrial Health. 2008;46:484–9.PubMedCrossRefGoogle Scholar
  158. Pénard-Morand C, Charpinw D, Raherisonz C, Kopferschmittz C, Caillaudk D, Lavaud F, et al. Long-term exposure to background air pollution related to respiratory and allergic health in schoolchildren. Clin Exp Allergy. 2005;35:1279–87.PubMedCrossRefGoogle Scholar
  159. Penttinen P, Timonen KL, Tiittanen P, Mirme A, Ruuskanen J, Pekkanen J. Ultrafine particles in urban air and respiratory health among adult asthmatics. Eur Respir J. 2001;17:428–35.PubMedCrossRefGoogle Scholar
  160. Pereira CEL, Heck TG, Saldiva PHN, Rhoden CR. Ambient particulate air pollution from vehicles promotes lipid peroxidation and inflammatory responses in rat lung. Braz J Med Biol Res. 2007;40:1353–9.PubMedGoogle Scholar
  161. Peters A, Wichamann HE, Tuch T, Heinich J, Heyder J. Respiratory effects are associated with the number of ultrafine particles. Am J Respir Crit Care Med. 1997;155:1376–83.PubMedGoogle Scholar
  162. Pope III CA. Invited commentary: particulate matter–mortality exposure–response relations and threshold. Am J Epidemiol. 2000;152:407–12.PubMedCrossRefGoogle Scholar
  163. Pope III CA, Dockery DW, Schwartz J. Review of epidemiologic evidence of health effects of particulate air pollution. Inhal Toxicol. 1995;7:1–8.CrossRefGoogle Scholar
  164. Pope III CA, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, et al. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA. 2002;287:1132–41.PubMedCrossRefGoogle Scholar
  165. Pourazar J, Mudway IS, Samet JM, Helleday R, Blomberg A, Wilson SJ, et al. Diesel exhaust activates redox-sensitive transcription factors and kinases in human airways. Am J Physiol, Lung Cell Mol Physiol. 2005;289:L724–30.CrossRefGoogle Scholar
  166. Pourazar J, Blomberg A, Kelly FJ, Davies DE, Wilson SJ, Holgate ST, et al. Diesel exhaust increases EGFR and phosphorylated C-terminal Tyr 1173 in the bronchial epithelium. Part Fibre Toxicol. 2008;5:8.PubMedGoogle Scholar
  167. Quay JL, Reed W, Samet JM, Devlin RB. Air pollution particles induce IL-6 gene expression in human airway epithelial cells via NF-kappaB activation. Am J Respir Cell Mol Biol. 1998;19:98–106.PubMedGoogle Scholar
  168. Rahman I, MacNee W. Role of transcription factors in inflammatory lung diseases. Thorax. 1998;53:601–12.PubMedCrossRefGoogle Scholar
  169. Rahman I, Yang SR, Biswas SK. Current concepts of redox signaling in the lungs. Antioxid Redox Signal. 2006;8:681–9.PubMedCrossRefGoogle Scholar
  170. Regalado J, Pérez-Padilla R, Sandores R, Ramirez JIP, Brauer M, Paré P, et al. The effect of biomass burning on respiratory symptoms and lung function in rural mexican women. Am J Respir Crit Care Med. 2006;174:901–5.PubMedCrossRefGoogle Scholar
  171. Reibman J, Hsu Y, Chen LC, Kumar A, Su WC, Choy W, et al. Size fractions of ambient particulate matter induce granulocyte macrophage colony—stimulating factor in human bronchial epithelial cells by mitogen-activated protein kinase pathways. Am J Respir Cell Mol Biol. 2002;27:455–62.PubMedGoogle Scholar
  172. Rengasamy A, Barger MW, Kane E, Ma JK, Castranova V, Ma JY. Diesel exhaust particle-induced alterations of pulmonary phase I and phase II enzymes of rats. J Toxicol Environ Health A. 2003;66:153–67.PubMedCrossRefGoogle Scholar
  173. Rinne ST, Rodas EJ, Bender BS, Rinne ML, Simpson JM, Galer-Unti R, et al. Relationship of pulmonary function among women and children to inddor air pollution from biomass use in rural Ecuador. Respir Med. 2006;100:1208–15.PubMedCrossRefGoogle Scholar
  174. Risom L, Moller P, Loft S. Oxidative stress-induced DNA damage by particulate air pollution. Mutat Res. 2005;592:119–37.PubMedGoogle Scholar
  175. Rizzo MC, Naspitz CK, Fernandez-Caldas E, Lockey RF, Mimica I, Sole D. Endotoxin exposure and symptoms in asthmatic children. Pediatr Allergy Immunol. 1997;8:121–6.PubMedCrossRefGoogle Scholar
  176. Roemer W, Hoek G, Brunekreef B, Clench-Aas J, Forsberg B, Pekkanen J, et al. PM10 elemental composition and acute respiratory health effects in European children (PEACE project). Eur Respir. 2000;15:553–9.CrossRefGoogle Scholar
  177. Romieu I, Barraza-Villarreal A, Escamilla-Nuñez C, Almstrand A-C, Diaz-Sanchez D, Sly PD, et al. Exhaled breath malondialdehyde as a marker of effect of exposure to air pollution in children with asthma. J Allergy Clin Immunol. 2008;121:903–9.PubMedCrossRefGoogle Scholar
  178. Rouse RL, Murphy G, Boudreaux MJ, Paulsen DB, Penn AL. Soot nanoparticles promote biotransformation, oxidative stress, and inflammation in murine lungs. Am J Respir Cell Mol Biol. 2008;39:198–207.PubMedCrossRefGoogle Scholar
  179. Roveri A, Coassin M, Maiorino M, Zamburlini A, van Amsterdam FT, Ratti E, et al. Effect of hydrogen peroxide on calcium homeostasis in smooth muscle cells. Arch Biochem Biophys. 1992;297:265–70.PubMedCrossRefGoogle Scholar
  180. Ryan PH, LeMasters G, Biagini J, Bernstein D, Grinshpun SA, Shukla R, et al. Is it traffic type, volume, or distance? Wheezing in infants living near truck and bus traffic. J Allergy Clin Immunol. 2005;116:279–84.PubMedCrossRefGoogle Scholar
  181. Saatian B, Zhao Y, He D, Georas SN, Watkins T, Spannhake EW, et al. Transcriptional regulation of lysophosphatidic acid-induced interleukin-8 expression and secretion by p38 MAPK and JNK in human bronchial epithelial cells. Biochem J. 2006;393:657–68.PubMedCrossRefGoogle Scholar
  182. Sager TM, Kommineni C, Castranova V. Pulmonary response to intratracheal instillation of ultrafine versus fine titanium dioxide: role of particle surface area. Part Fibre Toxicol. 2008;5:17.PubMedCrossRefGoogle Scholar
  183. Sakamoto N, Hayashi S, Gosselink J, Ishii H, Ishimatsu Y, Mukae H, et al. Calcium dependent and independent cytokine synthesis by air pollution particle-exposed human bronchial epithelial cells. Toxicol Applied Pharmacol. 2007;225:134–41.CrossRefGoogle Scholar
  184. Saldiva PH, Pope III CA, Schwartz J, Dockery DW, Lichtenfels AJ, Salge SM, et al. Air pollution and mortality in elderly people: a time-series study in Sao Paulo, Brazil. Arch Environ Health. 1995;50:159–63.PubMedCrossRefGoogle Scholar
  185. Saldiva PH, Clarke RW, Coull BA, Stearns RC, Lawrence J, Murthy GG, et al. Lung inflammation induced by concentrated ambient air particles is related to particle composition. Am J Respir Crit Care Med. 2002;165:1610–7.PubMedCrossRefGoogle Scholar
  186. Schwartz J, Marcus A. Mortality and air pollution in London: a time-series analysis. Am J Epidemiol. 1990;131:185–94.PubMedGoogle Scholar
  187. Schwartz J, Dockery DW, Neas LM. Is daily mortality associated specifically with fine particles? J Air Waste Manag Assoc. 1996;46:927–39.PubMedGoogle Scholar
  188. Schwartz J, Ballester F, Saez M, Pérez-Hoyos S, Bellido J, Cambra K, et al. The concentration–response relation between air pollution and daily deaths. Environ Health Perspect. 2001;109:1001–6.PubMedCrossRefGoogle Scholar
  189. Seaton A, Macnee W, Donaldson K, Godden D. Particulate air pollution and acute health effects. Lancet. 1995;345:176–8.PubMedCrossRefGoogle Scholar
  190. Shi JP, Evans DE, Khan AA, Harrison RM. Sources and concentration of nanoparticles (<10 nm diameter) in the urban atmosphere. Atmosph Environ. 2001;35:1193–202.CrossRefGoogle Scholar
  191. Shukla A, Timblin C, Bérubé K, Gordon T, McKinney M, Driscoll K, et al. Inhaled particulate matter causes expression of nuclear factor (NF)-κB-related genes and oxidant-dependent NF-κB activation in vitro. Am J Respir Cell Mol Biol. 2000;23:182–7.PubMedGoogle Scholar
  192. Shukla A, Timblin CR, Hubbard AK, Bravman J, Mossman BT. Silica-induced activation of c-Jun-NH2-terminal amino kinases, protracted expression of the activator protein-1 proto-oncogene, fra-1, and S-phase alterations are mediated via oxidative stress. Cancer Res. 2001;61:1791–5.PubMedGoogle Scholar
  193. Singh S, Shi T, Duffin R, Albrecht C, van Berlo D, Höhr D, et al. Endocytosis, oxidative stress and IL-8 expression in human lung epithelial cells upon treatment with fine and ultrafine TiO2: role of the specific surface area and of surface methylation of the particles. Toxicol Applied Pharmacol. 2007;222:141–51.CrossRefGoogle Scholar
  194. Sorensen M, Autrup H, Moller P, Hertel O, Jensen SS, Vinzents P, et al. Linking exposure to environmental pollutants with biological effects. Mutation Res. 2003;544:255–71.PubMedCrossRefGoogle Scholar
  195. Squadrito GL, Cueto R, Dellinger B, Pryor WA. Quinoid redox cycling as a mechanism for sustained free radical generation by inhaled airborne particulate matter. Free Radic Biol Med. 2001;31:1132–8.PubMedCrossRefGoogle Scholar
  196. Stewart RM, Weir EK, Montgomery MR, Niewoehner DE. Hydrogen peroxide contracts airway smooth muscle: a possible endogenous mechanism. Respir Physiol. 1981;45:333–42.PubMedCrossRefGoogle Scholar
  197. Stohs SJ, Bagchi D. Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med. 1995;18:321–36.PubMedCrossRefGoogle Scholar
  198. Stohs SJ, Bagci D, Hassoun E, Bagchi M. Oxidative mechanisms in the toxicity of chromium and cadmium ions. J Environ Pathol Toxicol Oncol. 2001;20:77–88.PubMedGoogle Scholar
  199. Stone V, Shaw J, Brown DM, MacNee W, Faux SP, Donaldson K. The role of oxidative stress in the prolonged inhibitory effect of ultrafine carbon black on epithelial cell function. Toxicol In Vitro. 1998;12:649–59.PubMedCrossRefGoogle Scholar
  200. Stone V, Tuinman M, Vamvakopoulos JE, Shaw J, Brown D, Petterson S, et al. Increased calcium influx in a monocyte cell line on exposure to ultrafine carbon black. Eur Respir J. 2000;15:297–303.PubMedCrossRefGoogle Scholar
  201. Stone V, Johnston H, Clift MJ. Air Pollution, ultrafine and nanoparticle toxicology: cellular and molecular interactions. IEEE Trans Nanobioscience. 2007;6:331–40.PubMedCrossRefGoogle Scholar
  202. Suzuki YJ, Ford GD. Superoxide stimulates IP3-induced Ca2+ release from vascular smooth muscle sarcoplasmic reticulum. Am J Physiol Heart Circ Physiol. 1992;262:H114–6.Google Scholar
  203. Suzuki YJ, Ford GD. Inhibition of Ca2+-ATPase of vascular smooth muscle sarcoplasmic reticulum by reactive oxygen intermediates. Am J Physiol Heart Circ Physiol. 1991;261:H568–74.Google Scholar
  204. Takizawa H. Diesel exhaust particles and their effect on induced cytokine expression in human bronchial epithelial cells. Curr Opinion Allergy Clinic Immunol. 2004;4:355–9.CrossRefGoogle Scholar
  205. Takizawa H, Ohtoshi T, Kawasaki S, Kohyama T, Desaki M, Kasama T, et al. Diesel exhaust particles induce NF-κB activation in human bronchial epithelial cells in vitro: importance in cytokine transcription1. J Immunol. 1999;162:4705–11.PubMedGoogle Scholar
  206. Tao F, Gonzalez-Flecha B, Kobzik L. Reactive oxygen species in pulmonary inflammation by ambient particulates. Free Radic Biol Med. 2003;35:327–40.PubMedCrossRefGoogle Scholar
  207. Tapon N, Nagata K, Lamarche N, Hall A. A new rac target POSH is an SH3-containing scaffold protein involved in the JNK/MAPK and NF-kappaB signaling pathways. EMBO J. 1998;17:1395–404.PubMedCrossRefGoogle Scholar
  208. Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol, Lung Cell Mol Physiol. 2000;279:L1005–28.Google Scholar
  209. Thorne PS, Kulhankova K, Yin M, Cohn R, Arbes Jr SJ, Zeldin DC. Endotoxin exposure is a risk factor for asthma: the national survey of endotoxin in United States housing. Am J Respir Crit Care Med. 2005;172:1371–7.PubMedCrossRefGoogle Scholar
  210. Timblin CR, Janssen YWM, Mossman BT. Transcriptional activation of the proto-oncogene c-jun, by asbestos and H2O2, is directly related to increased proliferation and transformation of tracheal epithelial cells. Cancer Res. 1995;55:2723–6.PubMedGoogle Scholar
  211. Timblin C, BeruBe K, Churg A, Driscoll K, Gordon T, Hemenway D, et al. Ambient particulate matter causes activation of the c-jun kinase/stress-activated protein kinase cascade and DNA synthesis in lung epithelial cells. Cancer Res. 1998;58:4543–7.PubMedGoogle Scholar
  212. Timblin CR, Shukla A, Berlanger I, Berube KA, Churg A, Mossman BT. Ultrafine airborne particles cause increases in protooncogenese expression and proliferation in alveolar epithelial cells. Toxicol Appl Pharmacol. 2002;179:98–104.PubMedCrossRefGoogle Scholar
  213. Tkaczyk J, Vízek M. Oxidative stress in the lung tissue—sources of reactive oxygen species and antioxidant defence. Prague Medical Report. 2007;108:105–14.PubMedGoogle Scholar
  214. Tokiwa H, Sera N, Nakanishi Y, Sagai M. 8-Hydroxyguanosine formed in human lung tissue and the association with diesel exhaust particles. Free Radic Biol Med. 1999;27:1251–8.PubMedCrossRefGoogle Scholar
  215. Tuntawiroon J, Mahidol C, Navasumrit P, Autrup H, Ruchirawat M. Increased health risk in Bangkok children exposed to polycyclic aromatic hydrocarbons from traffic-related sources. Carcinogenesis. 2007;28:816–22.PubMedCrossRefGoogle Scholar
  216. US EPA, United States Environmental Protective Agency. Mobile source air toxics: control of hazardous air pollutants from mobile sources 2005;
  217. Utell MJ, Frampton MW. Acute health effects of ambient air pollution: the ultrafine particle hypothesis. J Aerosol Med. 2000;13:355–9.PubMedCrossRefGoogle Scholar
  218. Valença SS, Castro P, Pimenta WA, Lanzetti M, Silva SV, Barja-Fidalgo C, et al. Light cigarette smoke-induced emphysema and NF-κB activation in mouse lung. Int J Exp Pathol. 2006;87:373–81.PubMedCrossRefGoogle Scholar
  219. Valko M, Morris H, Cronin MT. Metals, toxicity and oxidative stress. Curr Med Chem. 2005;12:1161–208.PubMedCrossRefGoogle Scholar
  220. Vanden Berghe W, Plaisance S, Boone E, De Bosscher K, Schmitz ML, Fiers W, et al. P38 and extracellular signal regulated kinase mitogen-activated protein kinase pathways are required for nuclear factor-kappaB p65 transactivation mediated by tumor necrosis factor. J Biol Chem. 1998;273:3285–90.CrossRefGoogle Scholar
  221. Veronesi B, Oortgiesen M, Carter JD, Devlin RB. Particulate matter initiates inflammatory cytokine release by activation of capsaicin and acid receptors in a human bronchial epithelial cell line. Toxicol Appl Pharmacol. 1999;154:106–15.PubMedCrossRefGoogle Scholar
  222. Veronesi B, De Haar C, Roy J, Oortgiesen M. Particulate matter inflammation and receptor sensitivity are target cell specific. Inhal Toxicol. 2002;14:159–83.PubMedCrossRefGoogle Scholar
  223. Wang S, Chanock S, Tang D, Li Z, Jedrychowski W, Perera FP. Assessment of interactions between PAH exposure and genetic polymorphisms on PAH-DNA adducts in African American, Dominican, and Caucasian mothers and newborns. Cancer Epidemiol Biomarkers Prev. 2008;17:405–13.PubMedCrossRefGoogle Scholar
  224. Wegesser TC, Last JA. Mouse lung inflammation after instillation of particulate matter collected from a working dairy barn. Toxicol Appl Pharmacol. 2009;236:348–57.PubMedCrossRefGoogle Scholar
  225. Weichenthal S, Dufresne A, Infante-Rivard C. Indoor ultrafine particles and childhood asthma: exploring a potential public health concern. Indoor Air. 2007;17:81–91.PubMedCrossRefGoogle Scholar
  226. Wilson M, Lightbody JH, Donaldson K, Sales JH, Stone V. Interactions between ultrafine particles and transition metals in vivo and in vitro. Toxicol Appl Pharmacol. 2002;184:172–9.PubMedCrossRefGoogle Scholar
  227. Wu W, Graves LM, Jaspers I, Devlin RB, Reed W, Samet JM. Activation of the EGF receptor signaling pathway in human airway epithelial cells exposed to metals. Am J Physiol. 1999;277:L924–31.PubMedGoogle Scholar
  228. Wu W, Jaspers I, Zhang W, Graves LM, Samet JM. Role of Ras in metal-induced EGF receptor signaling and NFkappaB activation in human airway epithelial cells. Am J Physiol, Lung Cell Mol Physiol. 2002;282:L1040–8.Google Scholar
  229. Xia T, Kovochich M, Nel A. The role of reactive oxygen species and oxidative stress in mediating particulate matter injury. Clin Occup Environ Med. 2006;5:817–36.PubMedGoogle Scholar
  230. Zanobetti A, Schwartz J, Dockery DW. Airborne particles are a risk factor for hospital admissions for heart and lung disease. Environ Health Perspect. 2000;108:1071–7.PubMedCrossRefGoogle Scholar
  231. Zhang JJ, Smith KR. Household air pollution from coal and biomass fuels in China: measurements, health impacts and interventions. Environ Health Perspect. 2007;115:848–55.PubMedCrossRefGoogle Scholar
  232. Zhao H, Barger MW, Ma JKH, Castranova V, Ma JYC. Cooperation of the inducible nitric oxide synthase and cytochrome P450 1A1 in mediating lung inflammation and mutagenicity induced by diesel exhaust particles. Environ Health Perspect. 2006;114:1253–8.PubMedCrossRefGoogle Scholar
  233. Zhao H, Ma JK, Barger MW, Mercer RR, Millecchia L, Schwegler-Berry D, et al. Reactive oxygen species- and nitric oxide-mediated lung inflammation and mitochondrial dysfunction in wild-type and iNOS-deficient mice exposed to diesel exhaust particles. J Toxicol Environ Health A. 2009a;72:560–70.PubMedCrossRefGoogle Scholar
  234. Zhao J, Shi X, Castranova V, Ding M. Occupational toxicology of nickel and nickel compounds. J Environ Pathol Toxicol Oncol. 2009b;28:177–208.PubMedGoogle Scholar
  235. Zhong CY, Zhou YM, Douglas GC, Witschi H, Pinkerton KE. MAPK/AP-1 signal pathway in tobacco smoke-induced cell proliferation and squamous metaplasia in the lungs of rats. Carcinogenesis. 2005;26:2187–95.PubMedCrossRefGoogle Scholar
  236. Zhong CY, Zhou YM, Joad JP, Pinkerton KE. Environmental tobacco smoke suppresses nuclear factor-κB signaling to increase apoptosis in infant monkey lungs. Am J Respir Crit Care Med. 2006;174:428–36.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Flavia Mazzoli-Rocha
    • 1
  • Silviane Fernandes
    • 1
  • Marcelo Einicker-Lamas
    • 2
  • Walter Araújo Zin
    • 1
    • 3
  1. 1.Laboratório de Fisiologia da RespiraçãoUniversidade Federal do Rio de JaneiroRio de JaneiroBrasil
  2. 2.Laboratório de Físico-Química Biológica Aída Hassón-Voloch, Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de JaneiroRio de JaneiroBrasil
  3. 3.Instituto de Biofísica Carlos Chagas Filho, C.C.S.Universidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations