Advertisement

Cell Biology and Toxicology

, Volume 26, Issue 4, pp 355–365 | Cite as

l-carnitine modulates blood platelet oxidative stress

  • Joanna Saluk-JuszczakEmail author
  • Beata Olas
  • Barbara Wachowicz
  • Rafal Glowacki
  • Edward Bald
Article

Abstract

The oxidative stress induced by acute exertion may interfere with blood platelet activation. The beneficial effect of l-carnitine (γ-trimethylamino-β-hydroxybutyric acid) on oxidative stress in blood platelets has not been fully investigated; however, different studies indicate that this compound modulates platelet functions. The aim of our study was to assess the effects of l-carnitine on platelet activation and oxidative/nitrative protein damage (determined by the levels of protein carbonyl groups, thiol groups, and 3-nitrotyrosine residues) in resting blood platelets or platelets treated with peroxynitrite (ONOO, a strong physiological oxidant) in vitro. We also investigated the effects of l-carnitine on the level of platelet glutathione and on the formation of superoxide anion radicals \( \left( {{\hbox{O}}_2^{ - \bullet }} \right) \), lipid peroxidation measured by thiobarbituric acid reactive substances (TBARS) in blood platelets stimulated by thrombin (a strong physiological agonist), and platelet aggregation induced by adenosine diphosphate (a strong physiological stimulator). We have observed that carnitine decreases platelet activation (measured by platelet aggregation, the generation of \( {\hbox{O}}_2^{ - \bullet } \), and TBARS production). Moreover, our results in vitro demonstrate that carnitine may protect against oxidation of thiol groups induced by ONOO. Thus, carnitine may have some protectory effects against oxidative changes induced in blood platelets.

Keywords

Blood platelets Carnitine Oxidative stress Peroxynitrite 

Notes

Acknowledgement

This work was supported by grant 505/374 from the University of Lodz.

References

  1. Alessio HM. Exercise-induced oxidative stress. Med Sci Sports Exer. 1993;25:218–24.Google Scholar
  2. Ando Y, Steiner M. Sulfhydryl and disulfide groups of platelet membranes: determination of disulfide groups. Biochim Biophys Acta. 1973a;311:26–37.CrossRefPubMedGoogle Scholar
  3. Ando Y, Steiner M. Sulfhydryl and disulfide groups of platelet membranes: determination of sulfhydryl groups. Biochim Biophys Acta. 1973b;311:38–44.CrossRefPubMedGoogle Scholar
  4. Bald E, Chwatko G, Glowacki R, Kuśmierek K. Analysis of plasma thiols by high-performance liquid chromatography with ultraviolet detection. J Chromatogr. 2004;1032:109–15.CrossRefGoogle Scholar
  5. Bartosz G. Peroxynitrite: mediator of the toxic action of nitric oxide. Acta Biochim Pol. 1996;43:645–59.PubMedGoogle Scholar
  6. Begonja AJ, Gambaryan S, Geiger J, Aktas B, Pozgajova M, Nieswandt B, et al. NAD(P)H oxidase-generated ROS production regulates {alpha}IIb{beta}3 integrin activation independent of the NO/cGMP pathway. Blood. 2005;106:2757–60.CrossRefPubMedGoogle Scholar
  7. Bloomer RJ, Smith WA. Oxidative stress in response to aerobic and anaerobic power testing: influence of exercise training and carnitine supplementation. Res Sports Med. 2009;1:1–16.CrossRefGoogle Scholar
  8. Bonomini M, Sirolli V, Dottori S, Amoroso L, Di Liberato L, Arduini A. l-carnitine inhibits a subset of platelet activation responses in chronic uraemia. Nephrol Dial Transplant. 2007;22:2623–9.CrossRefPubMedGoogle Scholar
  9. Brevetti G, Chiariello M, Ferulano G, Policicchio A, Nevola E, Rossini A, et al. Increases in walking distance in patients with peripheral vascular disease treated with l-carnitine: a double-blind, cross-over study. Circulation. 1988;77:767–73.PubMedGoogle Scholar
  10. Broquist HP, Borum PR. Carnitine biosynthesis: nutritional implications. Adv Nutr Res. 1982;4:181–204.PubMedGoogle Scholar
  11. Buczynski A, Kedziora J, Tkaczewski W, Wachowicz B. Effect of submaximal physical exercise on antioxidative protection of human blood platelets. Int J Sports Med. 1991;12:52–4.CrossRefPubMedGoogle Scholar
  12. Buss H, Chan TP, Sluis KB, Domigan NM, Winterbourn CC. Protein carbonyl measurement by a sensitive ELISA method. Free Radic Biol Med. 1997;23:361–6.CrossRefPubMedGoogle Scholar
  13. Cerretelli P, Marconi C. l-carnitine supplementation in humans. The effects on physical performance. Int J Sports Med. 1990;11:1–14.CrossRefPubMedGoogle Scholar
  14. Chen JQ, Cammarata PR, Baines CP, Yager JD. Regulation of mitochondrial respiratory chain biogenesis by estrogens/ estrogen receptors and physiological, pathological and pharmacological implications. Biochim Biophys Acta. 2009;1793:1540–70.CrossRefPubMedGoogle Scholar
  15. Cheung P, Salas E, Schulz R, Radomski M. Nitric oxide and platelet function: implications for neonatology. Semin Perinatol. 2003;21:409–17.CrossRefGoogle Scholar
  16. Di Massimo C, Scarpelli P, Tozzi-Ciancarelli MG. Possible involvement of oxidative stress in exercise-mediated platelet activation. Clin Hemorheol Microcirc. 2004;30:313–6.PubMedGoogle Scholar
  17. Eiserich JP, Patel RP, OÕDonnell VB. Pathophysiology of nitric oxide and related species: free radical reactions and modification of biomolecules. Mol Aspects Med. 1998;19:221–357.CrossRefPubMedGoogle Scholar
  18. El-Sayed MS, Ali N, El-Sayed Ali Z. Aggregation and activation of blood platelets in exercise and training. Sports Med. 2005;35:11–22.CrossRefPubMedGoogle Scholar
  19. Essex DW, Li M. Redox control of platelet aggregation. Biochemistry. 2003;42:129–36.CrossRefPubMedGoogle Scholar
  20. Ficicilar H, Zergeroglu AM, Ersoz G, Erdogan A, Ozdemir S, Tekin D. The effects of short-term training on platelet functions and total antioxidant capacity in rats. Physiol Res. 2006;55:151–6.PubMedGoogle Scholar
  21. Forde RC, Fitzgerald DJ. Reactive oxygen species and platelet activation in reperfusion injury. Circulation. 1997;95:787–9.PubMedGoogle Scholar
  22. Gawaz M, Langer H, May E. Platelets in inflammation and atherogenesis. J Clin Invest. 2005;115:3378–84.CrossRefPubMedGoogle Scholar
  23. Glowacki R, Wójcik K, Bald E. Facile and sensitive method for the determination of mesna in plasma by high-performance liquid chromatography with ultraviolet detection. J Chromatogr. 2001;914:29–35.CrossRefGoogle Scholar
  24. Głód BK, Kowalski C. Free radicals and their analysis using high performance liquid chromatography. Pol J Food Nutr Sci. 2004;13:23–8.Google Scholar
  25. Green DJ, Maiorana A, O'Driscoll G, Taylor R. Effect of exercise training on endothelium-derived nitric oxide function in humans. J Physiol. 2004;561:1–25.CrossRefPubMedGoogle Scholar
  26. Hellsten Y, Ahlborg G, Jensen-Urstad M, Sjodin B. Indication of in vivo xanthine oxidase activity in human skeletal muscle during exercise in man. Acta Physiol Scand. 1988;137:159–60.CrossRefGoogle Scholar
  27. Hellsten Y, Hansson HA, Johnson L, Frandsen U, Sjodin B. Increased expression of xanthine oxidase and insulin-like growth factor I (IGF-I) immunoreactivity in skeletal muscle after strenuous exercise in humans. Acta Physiol Scand. 1996;157:191–7.CrossRefPubMedGoogle Scholar
  28. Hernandez-Hernandez A, Anchez-Yague J, Martin-Valmaseda EM, Llanillo M. Oxidative inactivation of human and sheep platelet membrane-associated phosphotyrosine phosphatase activity. Free Radic Biol Med. 1999;26:1218–30.CrossRefPubMedGoogle Scholar
  29. Ischiropoulos H. Biological selectivity and functional aspects of protein tyrosine nitration. Biochem Biophys Res Commun. 2003;305:776–83.CrossRefPubMedGoogle Scholar
  30. Jahn B, Hansch GM. Oxygen radical generation in human platelets: dependence of 12-lipoxygenase activity and on the glutathione cycle. Int Arch Allergy Appl Immunol. 1990;93:73–9.CrossRefPubMedGoogle Scholar
  31. Jane E, Freedman MD. Molecular regulation of platelet-dependent thrombosis. Circulation. 2005;112:2725–34.CrossRefGoogle Scholar
  32. Karlic H, Lohninger A. Supplementation of l-carnitine in athletes: does it make sense? Nutrition. 2004;20:709–15.CrossRefPubMedGoogle Scholar
  33. Khan J, Brennan DM, Bradley N, Gao B, Bruckdorfer R, Jacobs M. 3-Nitrotyrosine in the proteins of human plasma determined by an ELISA method. Biochem J. 1998;330:795–801.PubMedGoogle Scholar
  34. Kingwell BA. Nitric oxide-mediated metabolic regulation during exercise: effects of training in health and cardiovascular disease. FASEB J. 2000;14:1685–96.CrossRefPubMedGoogle Scholar
  35. Lohninger A, Pittner G, Pittner F. l-carnitine: new aspects of a known compound—a brief survey. Monatsh Chem. 2005;136:1255–68.CrossRefGoogle Scholar
  36. Lufrano M, Balazy M. Interactions of peroxynitrite and other nitrating substances with human platelets: the role of glutathione and peroxynitrite permeability. Biochem Pharmacol. 2003;65:515–23.CrossRefPubMedGoogle Scholar
  37. Lundblad RL, White GC. The interaction of thrombin with blood platelets. Platelets. 2005;16:373–82.CrossRefPubMedGoogle Scholar
  38. Maiorana A, O'Driscoll G, Taylor R, Green D. Exercise and the nitric oxide vasodilator system. Sports Med. 2003;33:1013–35.CrossRefPubMedGoogle Scholar
  39. McBride JM, Kraemer WJ, Triplett-McBride NT, Sebastianelli W. The effect of resistance exercise on free radical production. Med Sci Sports Exerc. 1998;30:67–72.PubMedGoogle Scholar
  40. McBride JM, Radzwich R, Mangino L, McCormick M, Mc-Cormick T, Volek JS, et al. Responses of serum creatine kinase activity to heavy resistance exercise in endurance and recreationally trained women. J Strength Cond Res. 1995;9:139–42.CrossRefGoogle Scholar
  41. Michno A, Raszeja-Specht A, Jankowska-Kulawy A, Pawelczyk T, Szutowicz A. Effect of l-carnitine on acetyl-CoA content and activity of blood platelets in healthy and diabetic persons. Clin Chem. 2005;51:1673–82.CrossRefPubMedGoogle Scholar
  42. Miller DM, Grover TA, Nayini N, Aust SD. Xantine-oxidase- and iron-dependent lipid peroxidation. Arch Biochem Biophys. 1993;301:1–7.CrossRefPubMedGoogle Scholar
  43. Olas B, Żbikowska HM, Wachowicz B, Krajewski T, Buczynski A, Magnuszewska A. Inhibitory effect of resveratrol on free radical generation in blood platelets. Acta Biochim Pol. 1999;46:991–6.Google Scholar
  44. Olas B, Nowak P, Kołodziejczyk J, Wachowicz B. The effects of antioxidants on peroxynitrite-induced changes in platelet proteins. Thromb Res. 2004;113:399–406.CrossRefPubMedGoogle Scholar
  45. Olas B, Wachowicz B, Majsterek I, Błasiak J, Stochmal A, Oleszek W. Antioxidant properties of trans-3,3′,5, 5′-tetrahydroxy-4-4′methoxystilbene against modification of different biomolecules in human cells treated with platinum compounds. Nutrition. 2006;22:1202–9.CrossRefPubMedGoogle Scholar
  46. Olas B, Wachowicz B. Role of reactive nitrogen species in blood platelet functions. Platelets. 2007;18:555–65.CrossRefPubMedGoogle Scholar
  47. Pignatelli P, Pulcinelli FM, Lenti L, Gazzaniga PP, Violi F. Hydrogen peroxide is involved in collagen-induced platelet activation. Blood. 1998;91:484–90.PubMedGoogle Scholar
  48. Pignatelli P, Lenti L, Sanguigni V, Frati G, Simeoni I, Gazzaniga PP, et al. Carnitine inhibits arachidonic acid turnover, platelet function, and oxidative stress. Am J Physiol Heart Circ Physiol. 2003;284:41–8.Google Scholar
  49. Pryor WA, Squadrito GL. The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am J Physiol. 1995;268:L699–722.PubMedGoogle Scholar
  50. Sabetkar M, Low SY, Naseem KM, Bruckdorfer KR. The nitration of proteins in platelets: significance in platelet function. Free Radic Biol Med. 2002;33:728–36.CrossRefPubMedGoogle Scholar
  51. Singh I, Quinn H, Mok M, Southgate RJ, Turner AH, Li D, et al. The effect of exercise and training status on platelet activation: do cocoa polyphenols play a role? Platelets. 2006;17:361–7.CrossRefPubMedGoogle Scholar
  52. Soszynski M, Bartosz G. Effect of peroxynitrite on erythrocytes. Biochim Biophys Acta. 1996;1291:107–14.PubMedGoogle Scholar
  53. Spinelli SL, Brien JJ, Bancos S, Lehmann GM, Springer DL, Blumberg N, et al. The PPAR–platelet connection: modulators of inflammation and potential cardiovascular effects. PPAR Res. 2008;1:1–16.CrossRefGoogle Scholar
  54. Triggiani M, Oriente A, Golino P, Gentile M, Battaglia C, Brevetti G, et al. Inhibition of platelet-activating factor synthesis in human neutrophils and platelets by propionyl-l-carnitine. Biochem Pharmacol. 1999;58:1341–8.CrossRefPubMedGoogle Scholar
  55. Turgay M, Durak I, Erten S, Ertugrul E, Devrim E, Avci A, et al. Oxidative stress and antioxidant parameters in a Turkish group of patients with active and inactive systemic lupus erythematosus. APLAR J Rheumat. 2007;10:101–6.CrossRefGoogle Scholar
  56. Volek JS, Kramer WJ, Rubin MR, Gomez AL, Ratamess NA, Gaynor P. l-carnitine L-tartrate supplementation favorably affects markers of recovery from exercise stress. Am J Physiol Endocrinol Metab. 2002;282:E474–82.PubMedGoogle Scholar
  57. Wachowicz B. Adenine nucleotides in thrombocytes of birds. Cell Biochem Funct. 1984;2:167–70.CrossRefPubMedGoogle Scholar
  58. Wachowicz B, Kustroń J. Effect of cisplatin on lipid peroxidation in pig blood platelets. Cytobios. 1992;70:41–7.PubMedGoogle Scholar
  59. Wachowicz B, Olas B, Zbikowska HM, Buczynski A. Generation of reactive oxygen species in blood platelets. Platelets. 2002;13:175–82.CrossRefPubMedGoogle Scholar
  60. Walkowiak B, Michalak E, Koziołkiewicz W, Cierniewski CS. Rapid photometric method for estimation of platelet count in blood plasma or platelet suspension. Thromb Res. 1989;56:763–6.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Joanna Saluk-Juszczak
    • 1
    Email author
  • Beata Olas
    • 1
  • Barbara Wachowicz
    • 1
  • Rafal Glowacki
    • 2
  • Edward Bald
    • 2
  1. 1.Department of General Biochemistry, Institute of BiochemistryUniversity of LodzLodzPoland
  2. 2.Department of Environmental ChemistryUniversity of LodzLodzPoland

Personalised recommendations