Cell Biology and Toxicology

, Volume 26, Issue 4, pp 331–339

Morphological damages of a glyphosate-treated human keratinocyte cell line revealed by a micro- to nanoscale microscopic investigation

  • Celine Elie-Caille
  • Celine Heu
  • Catherine Guyon
  • Laurence Nicod


Among the molecules to which the human skin is exposed, glyphosate is used as an herbicide. Glyphosate has been shown to induce in vitro cutaneous cytotoxic effects, concomitant with oxidative disorders. In this following study, we focused on dynamic events of the loss of HaCaT cell integrity appearing after a glyphosate treatment. In these conditions, we showed that glyphosate is able to disrupt HaCaT cells and to induce intracellular oxidative cascade. In this aim, we optimized the conditions of cell treatment playing on exposure time (from 24 h to 30 min), which directly modify the cell viability profile (glyphosate 50% inhibition concentration from 28 to 53 mM) and allow to track cells along the treatment as an “induction and visualization” process. The combination of atomic force and fluorescence microscopic approaches offered opportunities to lead in parallel an investigation of the membrane surface and of the intracellular disorders, through cytoskeleton, nuclear, and oxidative stress marker targeting. The originality of our approach relies on monitoring all events derived from oxidative stress in process and performed by simultaneous cytotoxic induction and nanoscale cell visualization. We revealed a transition from spread and globular to elongated cell morphology, with a drastic cell size reduction, after a dose- and time-dependent glyphosate treatment; a redistribution of cell surface protrusions was also pointed out. All these membrane damages, added to observations of disorganized cytoskeleton, condensed chromatin, and overproduction of oxidative reactive species, lead us to conclude that glyphosate acts in induction of apoptotic process.


HaCaT Glyphosate Cytotoxicity Cell integrity Apoptosis Confocal and atomic force microscopy 



Atomic force microscopy


2′,7′-Dichlorodihydrofluorescein diacetate


Dulbecco’s modified Eagle’s medium


Fetal calf serum


Fluorescein isothiocyanate


50% inhibition concentration


3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide


Phosphate-buffered saline




Ultraviolet B


  1. Benachour N, Séralini G-E. Glyphosate formulations induce apoptosis and necrosis in human umbilical, embryonic, and placental cells. Chem Res Toxicol. 2009;22:97–105.CrossRefPubMedGoogle Scholar
  2. Black AT, Gray JP, Shakarjian MP, Laskin DL, Heck DE, Laskin JD. Increased oxidative stress and antioxidant expression in mouse keratinocytes following exposure to paraquat. Toxicol Appl Pharmacol. 2008;231:384–92.CrossRefPubMedGoogle Scholar
  3. Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol. 1988;106:761–71.CrossRefPubMedGoogle Scholar
  4. Carini M, Aldini G, Piccone M, Facino RM. Fluorescent probes as markers of oxidative stress in keratinocyte cell lines following UVB exposure. Farmaco. 2000;55:526–34.CrossRefPubMedGoogle Scholar
  5. Dague E, Gilbert Y, Verbelen C, Andre G, Alsteens D, Dufrêne YF. Towards a nanoscale view of fungal surfaces. Yeast. 2007;24:229–37.CrossRefPubMedGoogle Scholar
  6. Delescluse C, Ledirac N, de Sousa G, Pralavorio M, Lesca P, Rahmani R. Cytotoxic effects and induction of cytochromes P450 1A1/2 by insecticides, in hepatic or epidermal cells: binding capability to the Ah receptor. Toxicol Lett. 1998;96–97:33–9.CrossRefPubMedGoogle Scholar
  7. Deng Z, Zink T, Chen H-y, Walters D, Liu F-t, Liu G-y. Impact of actin rearrangement and degranulation on the membrane structure of primary mast cells: a combined atomic force and laser scanning confocal microscopy investigation. Biophys J. 2009;96:1629–39.CrossRefPubMedGoogle Scholar
  8. Gehin A, Guillaume YC, Millet J, Guyon C, Nicod L. Vitamins C and E reverse effect of herbicide-induced toxicity on human epidermal cells HaCaT: a biochemometric approach. Int J Pharm. 2005;288:219–26.CrossRefPubMedGoogle Scholar
  9. Gehin A, Guyon C, Nicod L. Glyphosate-induced antioxidant imbalance in HaCaT: the protective effect of vitamins C and E. Environ Toxicol Pharmacol. 2006;22:27–34.CrossRefGoogle Scholar
  10. Le Grimellec C, Lesniewska E, Cachia C, Schreiber JP, de Fornel F, Goudonnet JP. Imaging of the membrane surface of MDCK cells by atomic force microscopy. Biophys J. 1994;67:36–41.CrossRefPubMedGoogle Scholar
  11. Lockshin RA, Zakeri Z. Caspase-independent cell death? Oncogene. 2004;23:2766–73.CrossRefPubMedGoogle Scholar
  12. Lydataki S, Lesniewska E, Tsilimbaris MK, Le Grimellec C, Rochette L, Goudonnet JP, et al. Observation of the posterior endothelial surface of the rabbit cornea using atomic force microscopy. Cornea. 2003;22:651–64.CrossRefPubMedGoogle Scholar
  13. Malatesta M, Perdoni F, Santin G, Battistelli S, Muller S, Biggiogera M. Hepatoma tissue culture (HTC) cells as a model for investigating the effects of low concentrations of herbicide on cell structure and function. Toxicol in Vitro. 2008;22:1853–60.CrossRefPubMedGoogle Scholar
  14. Mañas F, Peralta L, Raviolo J, García Ovando H, Weyers A, Ugnia L, et al. Genotoxicity of AMPA, the environmental metabolite of glyphosate, assessed by the Comet assay and cytogenetic tests. Ecotoxicol Environ Saf. 2009;72:834–7.CrossRefPubMedGoogle Scholar
  15. Manni V, Lisi A, Pozzi D, Rieti S, Serafino A, Giuliani L, et al. Effects of extremely low frequency (50 Hz) magnetic field on morphological and biochemical properties of human keratinocytes. Bioelectromagnetics. 2002;23:298–305.CrossRefPubMedGoogle Scholar
  16. Marc J, Mulner-Lorillon O, Bellé R. Glyphosate-based pesticides affect cell cycle regulation. Biol Cell. 2004;96:245–9.CrossRefPubMedGoogle Scholar
  17. Marc J, Le Breton M, Cormier P, Morales J, Bellé R, Mulner-Lorillon O. A glyphosate-based pesticide impinges on transcription. Toxicol Appl Pharmacol. 2005;203:1–8.CrossRefPubMedGoogle Scholar
  18. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.CrossRefPubMedGoogle Scholar
  19. Parot P, Dufrêne YF, Hinterdorfer P, Le Grimellec C, Navajas D, Pellequer JL, et al. Past, present and future of atomic force microscopy in life sciences and medicine. J Mol Recognit. 2007;20:418–31.CrossRefPubMedGoogle Scholar
  20. Peixoto F. Comparative effects of the Roundup and glyphosate on mitochondrial oxidative phosphorylation. Chemosphere. 2005;61:1115–22.CrossRefPubMedGoogle Scholar
  21. Proksch E, Brandner JM, Jensen JM. The skin: an indispensable barrier. Exp Dermatol. 2008;17:1063–72.CrossRefPubMedGoogle Scholar
  22. Reich A, Lehmann B, Meurer M, Muller DJ. Structural alterations provoked by narrow-band ultraviolet B in immortalized keratinocytes: assessment by atomic force microscopy. Exp Dermatol. 2007;16:1007–15.CrossRefPubMedGoogle Scholar
  23. Reich A, Meurer M, Viehweg A, Muller DJ. Narrow-band UVB-induced externalization of selected nuclear antigens in keratinocytes: implications for lupus erythematosus pathogenesis. Photochem Photobiol. 2009;85:1–7.CrossRefPubMedGoogle Scholar
  24. Richard S, Moslemi S, Sipahutar H, Benachour N, Seralini GE. Differential effects of glyphosate and roundup on human placental cells and aromatase. Environ Health Perspect. 2005;113:716–20.CrossRefPubMedGoogle Scholar
  25. Rieti S, Manni V, Lisi A, Giuliani L, Sacco D, Emilia ED, et al. SNOM and AFM microscopy techniques to study the effect of non-ionizing radiation on the morphological and biochemical properties of human keratinocytes cell line (HaCaT). J Microsc. 2004;213:20–8.CrossRefPubMedGoogle Scholar
  26. Williams GM, Kroes R, Munro IC. Safety evaluation and risk assessment of the herbicide roundup and its active ingredient, glyphosate, for humans. Regul Toxicol Pharmacol. 2000;31:117–65.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Celine Elie-Caille
    • 1
  • Celine Heu
    • 1
    • 2
  • Catherine Guyon
    • 2
  • Laurence Nicod
    • 2
  1. 1.Clinical & Innovation Proteomic Platform (CLIPP), Institut Femto-st, UMR 6174 CNRSUniversity of Franche-ComteBesançon cedexFrance
  2. 2.Laboratoire de Biologie Cellulaire, EA4267, IFR133, UFR Sciences Médicales & Pharmaceutiques, Place St-JacquesUniversity of Franche-ComteBesançon cedexFrance

Personalised recommendations