Cell Biology and Toxicology

, Volume 26, Issue 2, pp 143–152

Induction of metallothionein in mouse cerebellum and cerebrum with low-dose thimerosal injection

  • Takeshi Minami
  • Eriko Miyata
  • Yamato Sakamoto
  • Hideo Yamazaki
  • Seiji Ichida
Article

Abstract

Thimerosal, an ethyl mercury compound, is used worldwide as a vaccine preservative. We previously observed that the mercury concentration in mouse brains did not increase with the clinical dose of thimerosal injection, but the concentration increased in the brain after the injection of thimerosal with lipopolysaccharide, even if a low dose of thimerosal was administered. Thimerosal may penetrate the brain, but is undetectable when a clinical dose of thimerosal is injected; therefore, the induction of metallothionein (MT) messenger RNA (mRNA) and protein was observed in the cerebellum and cerebrum of mice after thimerosal injection, as MT is an inducible protein. MT-1 mRNA was expressed at 6 and 9 h in both the cerebrum and cerebellum, but MT-1 mRNA expression in the cerebellum was three times higher than that in the cerebrum after the injection of 12 µg/kg thimerosal. MT-2 mRNA was not expressed until 24 h in both organs. MT-3 mRNA was expressed in the cerebellum from 6 to 15 h after the injection, but not in the cerebrum until 24 h. MT-1 and MT-3 mRNAs were expressed in the cerebellum in a dose-dependent manner. Furthermore, MT-1 protein was detected from 6 to 72 h in the cerebellum after 12 µg/kg of thimerosal was injected and peaked at 10 h. MT-2 was detected in the cerebellum only at 10 h. In the cerebrum, little MT-1 protein was detected at 10 and 24 h, and there were no peaks of MT-2 protein in the cerebrum. In conclusion, MT-1 and MT-3 mRNAs but not MT-2 mRNA are easily expressed in the cerebellum rather than in the cerebrum by the injection of low-dose thimerosal. It is thought that the cerebellum is a sensitive organ against thimerosal. As a result of the present findings, in combination with the brain pathology observed in patients diagnosed with autism, the present study helps to support the possible biological plausibility for how low-dose exposure to mercury from thimerosal-containing vaccines may be associated with autism.

Keywords

Thimerosal Ethyl mercury Metallothionein Cerebellum Cerebrum Capillary zone electrophoresis 

References

  1. Ambjørn M, Asmussen JW, Lindstam M, Gotfryd K, Jacobsen C, Kiselyov VV, et al. Metallothionein and a peptide modeled after metallothionein, EmtinB, induce neuronal differentiation and survival through binding to receptors of the low-density lipoprotein receptor family. J Neurochem. 2008;104:21–37.PubMedGoogle Scholar
  2. Aschner M, Vitarella D, Allen JW, Conklin DR, Cowan KS. Methylmercury-induced inhibition of regulatory volume decrease in astrocytes: characterization of osmoregulator efflux and its reversal by amiloride. Brain Res. 1998;811:133–42. doi:10.1016/S0006-8993(98)00629-5.CrossRefPubMedGoogle Scholar
  3. Atchison WD. Is chemical neurotransmission altered specifically during methylmercury-induced cerebellar dysfunction? Trends Pharmacol Sci. 2005;26:549–57. doi:10.1016/j.tips.2005.09.008.CrossRefPubMedGoogle Scholar
  4. Austin D. An epidemiological analysis of the ‘autism as mercury poisoning’ hypothesis. Int J Risk Saf Med. 2008;20:135–42.Google Scholar
  5. Baskin DS, Ngo H, Didenko VV. Thimerosal induces DNA breaks, caspase-3 activation, membrane damage, and cell death in cultured human neurons and fibroblasts. Toxicol Sci. 2003;74:361–8. doi:10.1093/toxsci/kfg126.CrossRefPubMedGoogle Scholar
  6. Bernard S, Enayati A, Redwood L, Roger H, Binstock T. Autism: a novel form of mercury poisoning. Med Hypotheses. 2001;56:462–71. doi:10.1054/mehy.2000.1281.CrossRefPubMedGoogle Scholar
  7. Burbacher TM, Shen DD, Liberato N, Grant KS, Cernichiari E, Clarkson T. Comparison of blood and brain mercury levels in infant monkeys exposed to metylmercury or vaccines containing thimerosal. Environ Health Perspect. 2005;113:1015–21.PubMedCrossRefGoogle Scholar
  8. Carrasco J, Penkowa M, Giralt M, Camats J, Molinero A, Campbell IL, et al. Role of metallothionein-III following central nervous system damage. Neurobiol Dis. 2003;13:22–36. doi:10.1016/S0969-9961(03)00015-9.CrossRefPubMedGoogle Scholar
  9. Chung RS, Hidalgo J, West AK. New insight into the molecular pathways of metallothionein-mediated neuroprotection and regeneration. J Neurochem. 2008;104:14–20.PubMedGoogle Scholar
  10. Clarkson TW. The three modern faces of mercury. Environ Health Perspect. 2002;110(suppl 1):11–23.PubMedGoogle Scholar
  11. Clements CJ, McIntyre PB. When science is not enough—a risk/benefit profile of thiomersal-containing vaccines. Expert Opin Drug Saf. 2006;5:17–29. doi:10.1517/14740338.5.1.17.CrossRefPubMedGoogle Scholar
  12. Coyle P, Philcox JC, Carey LC, Rofe AM. Metallothionein: the multipurpose protein. Cell Mol Life Sci. 2002;59:627–47. doi:10.1007/s00018-002-8454-2.CrossRefPubMedGoogle Scholar
  13. Dohi Y, Shimaoka H, Ikeuchi M, Ohgushi H, Yonemasu K, Minami T. Role of metallothionein isoforms in bone formation processes in rat marrow mesenchymal stem cells in culture. Biol Trace Elem Res. 2005;104:57–69. doi:10.1385/BTER:104:1:057.CrossRefPubMedGoogle Scholar
  14. Eddins D, Petro A, Pollard N, Freedman JH, Levin ED. Mercury-induced cognitive impairment in metallothinein-1/2 null mice. Neurotoxicol Teratol. 2008;30:88–95. doi:10.1016/j.ntt.2007.12.005.CrossRefPubMedGoogle Scholar
  15. Francois G, Duclos P, Margolis H, Lavanchy D, Siegrist CA, Meheus A, et al. Vaccine safety controversies and the future of vaccination programs. Pediatr Infect Dis J. 2005;24:953–61. doi:10.1097/01.inf.0000183853.16113.a6.CrossRefPubMedGoogle Scholar
  16. Gallagher C, Goodman M. Hepatitis B triple series vaccine and developmental disability in US children aged 1–9 years. Toxicol Environ Chem. 2008;90:997–1008. doi:10.1080/02772240701806501.CrossRefGoogle Scholar
  17. Geier MR, Gerer DA. The potential importance of steroids in the treatment of autistic spectrum disorders and other disorders involving mercury toxicity. Med Hypotheses. 2005;64:946–54. doi:10.1016/j.mehy.2004.11.018.CrossRefPubMedGoogle Scholar
  18. Geier DA, Geier MR. A metal-analysis epidemiologycal assessment of neurodevelopmental disorders following vaccines administered from 1994 through 2000 in the United States. Neuroendocrinol Lett. 2006;27:401–13.PubMedGoogle Scholar
  19. Geier DA, Sykes LK, Geier MR. A review of thimerosal (merthiolate) and its ethylmercury breakdown product: specific historical considerations regarding safety and effectiveness. J Toxicol Environ Health Part B. 2007;10:575–96. doi:10.1080/10937400701389875.CrossRefGoogle Scholar
  20. Geier DA, King PG, Sykes LK, Geier MR. A comprehensive review of mercury provoked autism. Indian J Med Res. 2008;128:383–411.PubMedGoogle Scholar
  21. Ghazi IE, Martin BL, Armitage IM. Metallothionein-3 is a component of a multiprotein complex in the mouse brain. Exp Biol Med. 2006;231:1500–6.Google Scholar
  22. Giralt M, Carrasco J, Penkowa M, Morcillo MA, Santamaria J, Campbell IL, et al. Astrocyte-targeted expression of interleukin-3 and interferon-α causes region-specific changes in metallothionein expression in the brain. Exp Neurol. 2001;168:334–46. doi:10.1006/exnr.2000.7601.CrossRefPubMedGoogle Scholar
  23. Guzzi GP, La Porta CAM. Molecular mechanisms triggered by mercury. Toxicology. 2008;244:1–12. doi:10.1016/j.tox.2007.11.002.CrossRefPubMedGoogle Scholar
  24. Haq F, Mahoney M, Koropatnick J. Signaling events for metallothionein induction. Mutat Res. 2003;533:211–26. doi:10.1016/j.mrfmmm.2003.07.014.PubMedGoogle Scholar
  25. Harry GJ, Harris MW, Burka LT. Mercury concentrations in brain and kidney following ethylmercury, methylmercury and thimerosal administration to neonatal mice. Toxicol Lett. 2004;154:183–9. doi:10.1016/j.toxlet.2004.07.014.CrossRefPubMedGoogle Scholar
  26. Hornig M, Chian D, Lipkin WI. Neurotoxic effects of postnatal thimerosal are mouse strain dependent. Mol Psychiatry. 2004;9:833–45. doi:10.1038/sj.mp. 4001529.CrossRefPubMedGoogle Scholar
  27. Hozumi I, Uchida Y, Watabe K, Sakamoto T, Inuzuka T. Growth inhibitory factor (GIF) can protect from brain damage due to stab wounds in rat brain. Neurosci Lett. 2006;395:220–3. doi:10.1016/j.neulet.2005.10.093.CrossRefPubMedGoogle Scholar
  28. Hozumi I, Suzuki JS, Kanazawa H, Hara A, Saio M, Inuzuka T, et al. Metallothionein-3 is expressed in the brain and various peripheral organs of the rat. Neurosci Lett. 2008;438:54–8. doi:10.1016/j.neulet.2008.04.047.CrossRefPubMedGoogle Scholar
  29. Kim HG, Hwang YP, Jeong HG. Metallothionein-III induces HIF-1α-mediated VEGF expression in brain endothelial cells. Biochem Biophys Res Commun. 2008;369:666–71.CrossRefPubMedGoogle Scholar
  30. Laurente J, Remuzgo F, Avalos B, Chiquinta J, Ponce B, Avendano R, et al. Neurotoxic effects of thimerosal at vaccines doses on the encephalon and development in 7 days-old hamsters. An Fac Med (Lima). 2007;68:222–37.Google Scholar
  31. Leyshon-Sørland K, Jasani B, Morgan AJ. The localization of mercury and metallothionein in the cerebellum of rats experimentally exposed to methylmercury. Histochem J. 1994;26:161–9. doi:10.1007/BF00157965.CrossRefPubMedGoogle Scholar
  32. Madsen KM, Lauritsen MB, Pedersen CB, Thorsen P, Plesner AM, Andersen PH, et al. Thimerosal and occurrence of autism: negative ecological evidence from Danish population-based data. Pediatrics. 2003;112:604–6. doi:10.1542/peds.112.3.604.CrossRefPubMedGoogle Scholar
  33. Magos L, Brown AW, Sparrow S, Bailey E, Snowden RT, Skipp WR. The comparative toxicology of ethyl- and methylmercury. Arch Toxicol. 1985;57:260–7. doi:10.1007/BF00324789.CrossRefPubMedGoogle Scholar
  34. Miles AT, Hawksworth GM, Beattie JH, Rodilla V. Induction, regulation, degradation, and biological significance of mammalian metallothioneins. Biochem Mol Biol. 2000;35:35–70. doi:10.1080/10409230091169168.CrossRefGoogle Scholar
  35. Minami T, Ichida S, Kubo K. Study of metallothionein using capillary zone electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci. 2002;781:303–11. doi:10.1016/S1570-0232(02)00496-8.CrossRefPubMedGoogle Scholar
  36. Minami T, Oda K, Gima N, Yamazaki H. Effects of lipopolysaccharide and chelator on mercury content in the cerebrum of thimerosal-administered mice. Environ Toxicol Pharmacol. 2007;24:316–20. doi:10.1016/j.etap.2007.08.004.CrossRefGoogle Scholar
  37. Moffatt P, Denizeau F. Metallothionein in physiological and physiopathological processes. Drug Metab Rev. 1997;29:261–307. doi:10.3109/03602539709037585.CrossRefPubMedGoogle Scholar
  38. Muhle R, Trentacoste SV, Rapin I. The genetics of autism. Pediatrics. 2004;113:e472–86. doi:10.1542/peds.113.5.e472.CrossRefPubMedGoogle Scholar
  39. Mukai N. An experimental study of alkylmercurial encephalopathy. Acta Neuropathol. 1972;22:102–9. doi:10.1007/BF00688778.CrossRefPubMedGoogle Scholar
  40. Mutter J, Naumann J, Schneider R, Walach H, Haley B. Mercury and autism: accelerating evidence? Neuroendocrinol Lett. 2005;26:439–46.PubMedGoogle Scholar
  41. Nishimura N, Nishimura H, Ghaffar A, Tohyama C. Localization of metallothionein in the brain of rat and mouse. J Histochem Cytochem. 1992;40:309–15.PubMedGoogle Scholar
  42. Penkowa M, Hidalgo J. Metallothionein I + II expression and their role in experimental autoimmune encephalomyelitis. Glia. 2000;32:247–63. doi:10.1002/1098-1136(200012)32:3<247::AID-GLIA50>3.0.CO;2-T.CrossRefPubMedGoogle Scholar
  43. Penkowa M, Tio L, Giralt M, Quintana A, Molinero A, Atrian S, et al. Specificity and divergence in the neurobiologic effects of different metallothioneins after brain injury. J Neurosci Res. 2006;83:974–84. doi:10.1002/jnr.20790.CrossRefPubMedGoogle Scholar
  44. Pichichero M, Cernichiari E, Lopreiato J, Treanor J. Mercury concentrations and metabolism in infant receiving vaccines containing thiomersal: a descriptive study. Lancet. 2002;360:1737–41. doi:10.1016/S0140-6736(02)11682-5.CrossRefPubMedGoogle Scholar
  45. Qu H, Syversen T, Aschner M, Sonnewald U. Effect of methylmercury on glutamate metabolism in cerebellar astrocytes in culture. Neurochem Int. 2003;43:411–6. doi:10.1016/S0197-0186(03)00029-9.CrossRefPubMedGoogle Scholar
  46. Sens MA, Somji S, Lamm DL, Garrett SH, Slovinsky F, Todd JH, et al. Metallothionein isoform 3 as a potential biomarker for human bladder cancer. Environ Health Perspect. 2000;108:413–8. doi:10.2307/3454381.CrossRefPubMedGoogle Scholar
  47. Shanker G, Allen JW, Mutkus LA, Aschner M. Methylmercury inhibits cysteine uptake in cultured primary astrocytes, but not in neurons. Brain Res. 2001;914:159–65. doi:10.1016/S0006-8993(01)02791-3.CrossRefPubMedGoogle Scholar
  48. Shanker G, Syversen T, Aschner M. Astrocyte-mediated methylmercury neurotoxicity. Biol Trace Elem Res. 2003;95:1–10. doi:10.1385/BTER:95:1:1.CrossRefPubMedGoogle Scholar
  49. Stajich GV, Lopez GP, Harry SW, Sexson WR. Iatrogenic exposure to mercury after hepatitis B vaccination in preterm infants. J Pediatr. 2000;136:679–81. doi:10.1067/mpd.2000.105133.CrossRefPubMedGoogle Scholar
  50. Suzuki K, Nakajima K, Otaki N, Kimura M, Kawahara U, Uehara K, et al. Localization of metallothionein in aged human brain. Pathol Int. 1994;44:20–6. doi:10.1111/j.1440-1827.1994.tb02581.x.CrossRefPubMedGoogle Scholar
  51. Toimela TA, Tähti H. Effects of mercury, methylmercury and aluminium on glial fibrillary acidic protein expression in rat cerebellar astrocyte cultures. Toxicol In Vitro. 1995;9:317–25. doi:10.1016/0887-2333(95)00002-P.CrossRefPubMedGoogle Scholar
  52. Uchida Y, Takio K, Titani K, Ihara Y, Tomonaga M. The growth inhibitory factor that is deficient in the Alzheimer’s disease brain is a 68 amino acid metallothionein-like protein. Neuron. 1991;7:1337–47. doi:10.1016/0896-6273(91)90272-2.CrossRefGoogle Scholar
  53. Ueha-Ishibashi T, Oyama Y, Nakao H, Umebayashi C, Nishizaki Y, Tatsuishi T, et al. Effect of thimerosal, a preservative in vaccines, on intracellular Ca2+ concentration of rat cerebellar neurons. Toxicology. 2004;195:77–84. doi:10.1016/j.tox.2003.09.002.CrossRefPubMedGoogle Scholar
  54. Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol. 2005;57:67–81. doi:10.1002/ana.20315.CrossRefPubMedGoogle Scholar
  55. Waalkes MP. Quantitation of metallothionein. In: Thomas JA, editor. Methods in Toxicology-Endocrinology. San Diego: Academic; 1996. p. 371–391.Google Scholar
  56. Walker SJ, Segal J, Aschner M. Cultured lymphocytes from autistic children and non-autistic siblings up-regulate heat shock protein RNA in response to thimerosal challenge. Neurotoxicol. 2006;27:685–92. doi:10.1016/j.neuro.2006.06.003.CrossRefGoogle Scholar
  57. Yao CP, Allen JW, Conklin DR, Aschner M. Transfection and overexpression of metallothionein-I in neonatal rat primary astrocyte cultures and in astrocytoma cells increases their resistance to methylmercury-induced cytotoxicity. Brain Res. 1999;818:414–20. doi:10.1016/S0006-8993(98)01229-3.CrossRefPubMedGoogle Scholar
  58. Yao CP, Allen JW, Mutkus LA, Xu SB, Tan KH, Aschner M. Foreign metallothionein-I expression by transient transfection in MT-I and MT-II null astrocytes confers increased proteinction against acute methylmercury cytotoxicity. Brain Res. 2000;855:32–8. doi:10.1016/S0006-8993(99)02211-8.CrossRefPubMedGoogle Scholar
  59. Yasutake A, Nagano M, Hirayama K. Alterations of metallothionein isomers in Hg0-exposed rat brain. Arch Toxicol. 2003;77:12–6. doi:10.1007/s00204-002-0410-2.CrossRefPubMedGoogle Scholar
  60. Yasutake A, Sawada M, Shimada A, Satoh M. Mercury accumulation and its distribution to metallothionein in mouse brain after sub-chronic pulse exposure to mercury vapor. Arch Toxicol. 2004;78:489–95. doi:10.1007/s00204-004-0572-1.CrossRefPubMedGoogle Scholar
  61. Yel L, Brown LE, Su K, Gollapudi S, Gupta S. Thimerosal induces neuronal cell apoptosis by causing cytochrome c and apoptosis-inducing factor release from mitochondria. Int J Mol Med. 2005;16:971–7.PubMedGoogle Scholar
  62. Yin Z, Milatovic D, Aschner JL, Syversen T, Rocha JBT, Souza DO, et al. Methylmercury induces oxidative injury, alterations in permeability and glutamine transport in cultured astrocytes. Brain Res. 2007;1131:1–10. doi:10.1016/j.brainres.2006.10.070.CrossRefPubMedGoogle Scholar
  63. Young HA, Geier DA, Geier MR. Thimerosal exposure in infants and neurodevelopmental disorders: an assessment of computerized medical records in the Vaccine Safety Datalink. J Neurol Sci. 2008;271:110–8. doi:10.1016/j.jns.2008.04.002.CrossRefPubMedGoogle Scholar
  64. Yu WH, Lukiw WJ, Bergeron C, Niznik HB, Fraser PE. Metallothionein III is reduced in Alzheimer’s disease. Brain Res. 2001;894:37–45. doi:10.1016/S0006-8993(00)03196-6.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Takeshi Minami
    • 1
  • Eriko Miyata
    • 1
  • Yamato Sakamoto
    • 2
  • Hideo Yamazaki
    • 1
  • Seiji Ichida
    • 2
  1. 1.Department of Life Sciences, School of Science & EngineeringKinki UniversityHigashi-osakaJapan
  2. 2.Department of Clinical Pharmacy, School of Pharmaceutical SciencesKinki UniversityHigashi-osakaJapan

Personalised recommendations