Cell Biology and Toxicology

, Volume 24, Issue 6, pp 641–647 | Cite as

Transcriptome profiling in crustaceans as a tool for ecotoxicogenomics

Daphnia magna DNA microarray
  • Hajime Watanabe
  • Kaoru Kobayashi
  • Yasuhiko Kato
  • Shigeto Oda
  • Ryoko Abe
  • Norihisa Tatarazako
  • Taisen Iguchi
Article

Abstract

Chemicals released into the environment have the potential to affect various species and it is important to evaluate such chemical effect on ecosystems, including aquatic organisms. Among aquatic organisms, Daphnia magna has been used extensively for acute toxicity or reproductive toxicity tests. Although these types of tests can provide information on hazardous concentrations of chemicals, they provide no information on their mode of action. Recent advances in toxicogenomics, the integration of genomics with toxicology, have the potential to afford a better understanding of the responses of aquatic organisms to pollutants. In a previous study, we developed an oligonucleotide-based DNA microarray with high reproducibility using a Daphnia expressed sequence tag (EST) database. In this study, we increased the number of genes on the array and used it for a careful ecotoxicogenomic assessment of Daphnia magna. The DNA microarray was used to evaluate gene expression profiles of neonate daphnids exposed to beta-naphthoflavone (bNF). Exposure to this chemical resulted in a characteristic gene expression pattern. As the number of the genes on an array was increased, the number of genes that were found to respond to the chemicals was also increased, which made the classification of the toxic chemicals easier and more accurate. This newly developed DNA microarray can be useful for a obtaining a better mechanistic understanding of chemical toxicity effects on a common freshwater organism.

Keywords

Daphnia magna Water flea Toxicogenomics Ecotoxicogenomics DNA microarray Naphthoflavone 

Abbreviations

AhR

aryl hydrocarbon receptor

Notes

Acknowledgement

This study was supported by grants from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, from the Ministry of the Environment of Japan.

References

  1. Butler RA, Kelley ML, Powell WH, Hahn ME, Van Beneden RJ. An aryl hydrocarbon receptor (AHR) homologue from the soft-shell clam, Mya arenaria: evidence that invertebrate AHR homologues lack 2,3,7,8-tetrachlorodibenzo-p-dioxin and beta-naphthoflavone binding. Gene. 2001;278:223–34.PubMedCrossRefGoogle Scholar
  2. EPA. AQUIRE (Aquatic Toxicity Information Retrieval Database), National Health and Environmental Effects Research Laboratory, Duluth, MN. 2002Google Scholar
  3. Iguchi T, Watanabe H, Katsu Y. Application of ecotoxicogenomics for studying endocrine disruption in vertebrates and invertebrates. Environ Health Perspect. 2006;114(Suppl 1):101–5.PubMedGoogle Scholar
  4. Oda S, Tatarazako N, Watanabe H, Morita M, Iguchi T. Production of male neonates in four cladoceran species exposed to a juvenile hormone analog, fenoxycarb. Chemosphere. 2005;60:74–8.PubMedCrossRefGoogle Scholar
  5. OECD. Test Guideline 202. Daphnia sp. Acute Immobilisation Test. 1981;Google Scholar
  6. OECD. Test Guideline 205. Avian Dietary Toxicity Test. 1984;Google Scholar
  7. OECD. Test Guideline 203. Fish, Acute Toxicity Test. 1992Google Scholar
  8. OECD. Test Guideline 211. Daphnia magna Reproduction Test. 1998Google Scholar
  9. OECD. Test No. 201: Alga, Growth Inhibition Test. 2006Google Scholar
  10. Olmstead AW, LeBlanc GA. Temporal and quantitative changes in sexual reproductive cycling of the cladoceran Daphnia magna by a juvenile hormone analog. J Exp Zool. 2001a;290:148–55.PubMedCrossRefGoogle Scholar
  11. Olmstead AW, LeBlanc GL. Low exposure concentration effects of methoprene on endocrine-regulated processes in the crustacean Daphnia magna. Toxicol Sci. 2001b;62:268–73.PubMedCrossRefGoogle Scholar
  12. Powell-Coffman JA, Bradfield CA, Wood WB. Caenorhabditis elegans orthologs of the aryl hydrocarbon receptor and its heterodimerization partner the aryl hydrocarbon receptor nuclear translocator. Proc Natl Acad Sci U S A. 1998;95:2844–9.PubMedCrossRefGoogle Scholar
  13. Poynton HC, Varshavsky JR, Chang B, Cavigiolio G, Chan S, Holman PS, Loguinov AV, Bauer DJ, Komachi K, Theil EC, Perkins EJ, Hughes O, Vulpe CD. Daphnia magna ecotoxicogenomics provides mechanistic insights into metal toxicity. Environ Sci Technol. 2007;41:1044–50.PubMedCrossRefGoogle Scholar
  14. Snape JR, Maund SJ, Pickford DB, Hutchinson TH. Ecotoxicogenomics: the challenge of integrating genomics into aquatic and terrestrial ecotoxicology. Aquat Toxicol. 2004;67:143–54.PubMedCrossRefGoogle Scholar
  15. Soetaert A, Moens LN, Van der Ven K, Van Leemput K, Naudts B, Blust R, De Coen WM. Molecular impact of propiconazole on Daphnia magna using a reproduction-related cDNA array. Comp Biochem Physiol C Toxicol Pharmacol. 2006;142:66–76.PubMedCrossRefGoogle Scholar
  16. Soetaert A, van der Ven K, Moens LN, Vandenbrouck T, van Remortel P, De Coen WM. Daphnia magna and ecotoxicogenomics: gene expression profiles of the anti-ecdysteroidal fungicide fenarimol using energy-, molting- and life stage-related cDNA libraries. Chemosphere. 2007a;67:60–71.PubMedCrossRefGoogle Scholar
  17. Soetaert A, Vandenbrouck T, van der Ven K, Maras M, van Remortel P, Blust R, De Coen WM. Molecular responses during cadmium-induced stress in Daphnia magna: integration of differential gene expression with higher-level effects. Aquat Toxicol. 2007b;83:212–22.PubMedCrossRefGoogle Scholar
  18. Tatarazako N, Oda S, Watanabe H, Morita M, Iguchi T. Juvenile hormone agonists affect the occurrence of male Daphnia. Chemosphere. 2003;53:827–33.PubMedCrossRefGoogle Scholar
  19. von der Ohe PC, Kuhne R, Ebert RU, Altenburger R, Liess M, Schuurmann G. Structural alerts—a new classification model to discriminate excess toxicity from narcotic effect levels of organic compounds in the acute daphnid assay. Chem Res Toxicol. 2005;18:536–55.CrossRefGoogle Scholar
  20. Watanabe H, Iguchi T. Using ecotoxicogenomics to evaluate the impact of chemicals on aquatic organisms. Marin Biology. 2006;149:107–15.CrossRefGoogle Scholar
  21. Watanabe H, Tatarazako N, Oda S, Nishide H, Uchiyama I, Morita M, Iguchi T. Analysis of expressed sequence tags of the water flea Daphnia magna. Genome. 2005;48:606–9.PubMedCrossRefGoogle Scholar
  22. Watanabe H, Takahashi E, Nakamura Y, Oda S, Tatarazako N, Iguchi T. Development of a Daphnia magna DNA microarray for evaluating the toxicity of environmental chemicals. Environ Toxicol Chem. 2007;26:669–76.PubMedCrossRefGoogle Scholar
  23. Waters MD, Fostel JM. Toxicogenomics and systems toxicology: aims and prospects. Nat Rev Genet. 2004;5:936–48.PubMedCrossRefGoogle Scholar
  24. Waters M, Boorman G, Bushel P, Cunningham M, Irwin R, Merrick A, Olden K, Paules R, Selkirk J, Stasiewicz S, Weis B, Van Houten B, Walker N, Tennant R. Systems toxicology and the Chemical Effects in Biological Systems (CEBS) knowledge base. EHP Toxicogenomics 2003;111:15–28(811–24).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Hajime Watanabe
    • 1
  • Kaoru Kobayashi
    • 1
  • Yasuhiko Kato
    • 1
  • Shigeto Oda
    • 2
  • Ryoko Abe
    • 2
  • Norihisa Tatarazako
    • 2
  • Taisen Iguchi
    • 1
  1. 1.Okazaki Institute of Integrative BioscienceNational Institutes of Natural SciencesOkazakiJapan
  2. 2.National Institute for Environmental StudiesTsukubaJapan

Personalised recommendations