Cell Biology and Toxicology

, Volume 24, Issue 6, pp 503–512 | Cite as

Toxicity of landfill leachate to sea urchin development with a focus on ammonia

  • Maria Byrne
  • Diana J. Oakes
  • John K. Pollak
  • Edwina Laginestra


Sea urchin gametes and embryos serve as a model system to evaluate toxicity in the marine environment. In this study, the toxicity of complex chemical mixtures in leachate samples to sea urchin development was examined with a focus on ammonia, which was the main contaminant of concern in most samples. Two rapid tests, the submitochondrial particle function and bacterial luminescence tests, were also used. Ammonia is highly toxic to sea urchin embryos with an EC50 of 1.3 mg l−1 for the embryos of the Australian sea urchin Heliocidaris tuberculata. Leachate ammonia levels were well above these EC50 concentrations. To assess the contribution of ammonia to leachate toxicity in sea urchin development, we compared the predicted toxic units (PTU) and observed toxic units (OTU) for ammonia for each sample. The PTU/OTU comparison revealed that the sensitivity of the sea urchin embryos to ammonia were altered (enhanced or decreased) by other chemicals in the leachates. This result emphasises the need for parallel chemical analyses and a suite bioassays for evaluating the toxicity of complex and variable chemical mixtures.


Fertilisation Development Sea urchin Ammonia Leachates Toxicity 



nicotinamide adenine dinucleotide


observed toxic units


predicted toxic units


reverse electron transport


sea urchin development test


sea urchin fertilisation test


submitochondrial particle test



The research was supported by the Olympic Co-ordination Authority and assisted by F. Mazzone, G. Spirakis, P. Selvakumaraswamy, P. Cisternas, N. Soars and J. Simon. Thanks to C. King and G. Birch for advice. Sydney Aquarium provided facilities to maintain urchins. The reviewers are thanked for helpful comments that improved the manuscript.


  1. Argese E, Bettiol C, Volpi Ghirardini A, Fasolo M, Guirin G, Ghetti PF. 1998 Comparison of in vitro submitochondrial particle and Microtox® assays for determining the toxicity of organotin compounds. Environ Toxicol Chem 1998;17:1005–12. doi: 10.1897/1551-5028(1998)017<1005:COIVSP>2.3.CO;2.CrossRefGoogle Scholar
  2. Arizzi Novelli A, Picone M, Losso C, Volpi Ghirardini A. Ammonia as confounding factor in toxicity tests with the sea urchin Paracentrotus lividus (Lmk). Toxicol Environ Chem 2003;85:183–91.CrossRefGoogle Scholar
  3. Binet MT, Adams MA, Stauber JL, King CK, Doyle CJ, Lim RP, et al. Toxicity assessment of leachates from Homebush Bay landfills. Aust J Ecotoxicol 2003;9:7–18.Google Scholar
  4. Blondin GA, Knobeloch LM, Read HW, Harkin JM. Mammalian mitochondria as in vitro monitors of water quality. Bull Environ Contam Toxicol 1987;38:467–74. doi: 10.1007/BF01606616.PubMedCrossRefGoogle Scholar
  5. Burton SAQ, Watson-Craik IA. Ammonia and nitrogen fluxes in landfill sites: applicability to sustainable landfilling. Water Manage Res 1998;16:41–53.Google Scholar
  6. Byrne M, Pollak J, Oakes D, Laginestra E. Comparison of the submitochondrial particle test, Microtox® and sea urchin fertilization and development tests: parallel assays with leachates. Aust J Ecotoxicol 2003;9:19–28.Google Scholar
  7. Carr RS, Biedenbach JM, Nipper M. Influence of potentially confounding factors on sea urchin porewater toxicity tests. Arch Environ Contam Toxicol 2006;51:573–9. doi: 10.1007/s00244-006-0009-3.PubMedCrossRefGoogle Scholar
  8. Clément B, Merlin G. The contribution of ammonia and alkalinity to landfill leachate toxicity to duckweed. Sci Total Environ 1995;170:71–9. doi: 10.1016/0048-9697(95)04563-G.CrossRefGoogle Scholar
  9. Dinnel PA, Link JM, Stober QJ. Improved methodology for a sea urchin sperm cell bioassay for marine waters. Arch Environ Contam Toxicol 1987;16:23–32. doi: 10.1007/BF01055356.PubMedCrossRefGoogle Scholar
  10. Doyle CJ, Pablo F, Lim RP, Hyne RV. Assessment of metal toxicity in sediment pore-water from Lake Macquarie, Australia. Arch Environ Contam Toxicol 2003;44:343–50. doi: 10.1007/s00244-002-2003-8.PubMedCrossRefGoogle Scholar
  11. Fernandez N, Beiras R. Combined toxicity of dissolved mercury with copper, lead and cadmium on embryogenesis and early larval growth of the Paracentrotus lividus sea-urchin. Ecotoxicology 2001;10:263–71. doi: 10.1023/A:1016703116830.PubMedCrossRefGoogle Scholar
  12. IPCC. Climate Change 2007: The fourth assessment report of the intergovernmental panel on climate change (IPCC). Cambridge University Press, Cambridge UK; 2007.Google Scholar
  13. Irene M, Lo C. Characteristics and treatment of leachates from domestic landfills. Environ Int 1996;22:433–42.Google Scholar
  14. Laginestra E. Developing long term monitoring plans for the Homebush Bay Olympic site. Aust J Ecotoxicol 2003;9:1–6.Google Scholar
  15. Losso C, Arizzi Novelli A, Picone M, Marchetto D, Pantani C, Ghetti PF, et al. Potential role of sulfide and ammonia as confounding factors in elutriate toxicity bioassays with early life stages of sea urchins and bivalves. Ecotoxicol Environ Saf 2007;66:252–7. doi: 10.1016/j.ecoenv.2005.12.008.PubMedCrossRefGoogle Scholar
  16. Marin A, Montoya S, Vita R, Marín-Guirao L, Lloret J, Aguado F. Utility of sea urchin embryo-larval bioassays for assessing the environmental impact of marine fishcage farming. Aquaculture 2007;271:286–97. doi: 10.1016/j.aquaculture.2007.05.030.CrossRefGoogle Scholar
  17. McCready S, Spyrakis G, Creely CR, Birch GF, Long ER. Toxicity of surficial sediments from Sydney harbour and vicinity, Australia. Environ Monit Assess 2004;96:53–83. doi: 10.1023/B:EMAS.0000031716.34645.71.PubMedCrossRefGoogle Scholar
  18. Oakes DJ, Pollak JK. Effects of a herbicide formulation, Tordon 75D, and its individual components on the oxidative functions of mitochondria. Toxicol 1999;136:41–52. doi: 10.1016/S0300-483X(99)00055-4.CrossRefGoogle Scholar
  19. Oakes D, Pollak JK. The in vitro evaluation of the toxicities of three related herbicide formulations containing ester derivatives of 2,4,5-T and 2,4-D using sub-mitochondrial particles. Toxicology 2000;151:1–9. doi: 10.1016/S0300-483X(00)00244-4.PubMedCrossRefGoogle Scholar
  20. Qureshi AA, Bulich AA, Isenberg DL. MicrotoxÒ Toxicity Test Systems—where they stand today. In: Wells PG, Lee K, Blaise C, editors. Microscale testing in aquatic toxicology—advances, techniques and practice. Boca Raton: CRC; 1998. p. 185–99.Google Scholar
  21. Simmons JE, Berman E. Toxicity of complex waste mixtures: a comparison of observed and predicted lethality. J Toxicol Environ Health 1989;27:275–86.PubMedCrossRefGoogle Scholar
  22. Soualili D, Dubois P, Gosselin P, Pernet P, Guillou M. Assessment of seawater pollution by heavy metals in the neighbourhood of Algiers: use of the sea urchin, Paracentrotus lividus, as a bioindicator. ICES J Mar Sci 2007;65:132–9. doi: 10.1093/icesjms/fsm183.CrossRefGoogle Scholar
  23. Sprague JB. Measurement of pollutant toxicity to fish. II. Utilizing and applying bioassay results. Water Res 1970;4:3–32. doi: 10.1016/0043-1354(70)90018-7.CrossRefGoogle Scholar
  24. Stauber JL, Adams MS, Binet MT, King CK, Lim RP, Doyle CJ, et al. Toxicity assessment of leachates from Homebush bay landfills. Report No. ET/IR341R CSIRO Centre for Advanced Analytical Chemistry Energy Technology. 2000.Google Scholar
  25. Suh JY, Birch GF, Hughes K. Hydrochemistry in reclaimed lands of the 2000 Olympic games site, Sydney, Australia. J Coast Res 2004;20:709–21. doi: 10.2112/1551-5036(2004)20[709:HIRLOT]2.0.CO;2.CrossRefGoogle Scholar
  26. Weber CI, Horning WB, Klemm DJ, Neiheisel TW, Lewis PA, Robinson EL. Sea urchin (Arbacia punctulata) fertilisation test method 1008. In. Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Marine and Estuarine Organisms. U.S. EPA, Environmental Monitoring and Support Laboratory, Cincinnati, Ohio; 1988. pp. 239–272.Google Scholar
  27. Weideborg M, Vik EA, Oford GD, Kjonno O. Comparison of three marine screening tests and four Oslo and Paris Commission procedures to evaluate toxicity of offshore chemicals. Environ Toxicol Chem 1997;16:384–9. doi: 10.1897/1551-5028(1997)016<0384:COTMST>2.3.CO;2.CrossRefGoogle Scholar
  28. Woodworth JG, King CK, Miskiewicz AG, Laginestra E, Simon J. Assessment of the comparative toxicity of sewage effluent from 10 sewage treatment plants in the area of Sydney, Australia using an amphipod and two sea urchin bioassays. Mar Pollut Bull 1999;39:174–8. doi: 10.1016/S0025-326X(99)00096-X.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Maria Byrne
    • 1
  • Diana J. Oakes
    • 2
  • John K. Pollak
    • 1
  • Edwina Laginestra
    • 3
  1. 1.Anatomy and Histology, F13University of SydneySydneyAustralia
  2. 2.Biomedical Science, Lidcombe CampusUniversity of SydneySydneyAustralia
  3. 3.Sydney Olympic Park AuthoritySydneyAustralia

Personalised recommendations