Cell Biology and Toxicology

, Volume 25, Issue 3, pp 227–243 | Cite as

Morphological alterations induced by doxorubicin on H9c2 myoblasts: nuclear, mitochondrial, and cytoskeletal targets

  • Vilma A. Sardão
  • Paulo J. Oliveira
  • Jon Holy
  • Catarina R. Oliveira
  • Kendall B. Wallace


Doxorubicin (Dox) is a very potent antineoplastic agent used against several types of cancer, despite a cumulative cardiomyopathy that reduces the therapeutic index for treatment. H9c2 myoblast cells have been used as an in vitro model to study biochemical alterations induced by Dox treatment on cardiomyocyte cells. Despite the extensive work already published, few data are available regarding morphological alterations of H9c2 cells during Dox treatment. The purpose of the present work was to evaluate Dox-induced morphological alterations in H9c2 myoblasts, focusing especially on the nuclei, mitochondria, and structural fibrous proteins. Treatment of H9c2 cell with low concentrations of Dox causes alterations in fibrous structural proteins including the nuclear lamina and sarcomeric cardiac myosin, as well as mitochondrial depolarization and fragmentation, membrane blebbing with cell shape changes, and phosphatidylserine externalization. For higher Dox concentrations, more profound alterations are evident, including nuclear swelling with disruption of nuclear membrane structure, mitochondrial swelling, and extensive cytoplasm vacuolization. The results obtained indicate that Dox causes morphological alterations in mitochondrial, nuclear, and fibrous protein structures in H9c2 cells, which are dependent on the drug concentration. Data obtained with the present study allow for a better characterization of the effects of Dox on H9c2 myoblasts, used as a model to study Dox-induced cardiotoxicity. The results obtained also provide new and previously unknown targets that can contribute to understand the mechanisms involved in the cardiotoxicity of Dox.


Cytoskeleton Doxorubicin H9c2 myoblasts Mitochondria Nuclei 



differential interference contrast




lactate dehydrogenase




reactive oxygen species


tetramethylrhodamine methyl ester


  1. Ben Yaou R, Gueneau L, Demay L, et al. Heart involvement in lamin A/C related diseases. Arch Mal Coeur Vaiss. 2006;99(9):848–55.PubMedGoogle Scholar
  2. Bergmeyer HU, Bernt E. Lactate-dehydrogenase, UV-assay with pyruvate and NADH. In: Bergmeyer HU, editor. Methods of enzymatic analysis (vol. 2). New York: Academic; 1974.Google Scholar
  3. Berthiaume JM, Wallace KB. Adriamycin-induced oxidative mitochondrial cardiotoxicity. Cell Biol Toxicol. 2007;23(1):15–25.PubMedCrossRefGoogle Scholar
  4. Box VG. The intercalation of DNA double helices with doxorubicin and nagalomycin. J Mol Graph Model. 2007;26(1):14–9.PubMedCrossRefGoogle Scholar
  5. Bridger JM, Foeger N, Kill IR, et al. The nuclear lamina. Both a structural framework and a platform for genome organization. FEBS J. 2007;274(6):1354–61.PubMedCrossRefGoogle Scholar
  6. Brostrom MA, Reilly BA, Wilson FJ, et al. Vasopressin-induced hypertrophy in H9c2 heart-derived myocytes. Int J Biochem Cell Biol. 2000;32(9):993–1006.PubMedCrossRefGoogle Scholar
  7. Chua CC, Liu X, Gao J, et al. Multiple actions of pifithrin-alpha on doxorubicin-induced apoptosis in rat myoblastic H9c2 cells. Am J Physiol Heart Circ Physiol. 2006;290(6):H2606–13.PubMedCrossRefGoogle Scholar
  8. Croft DR, Coleman ML, Li S, et al. Actin-myosin-based contraction is responsible for apoptotic nuclear disintegration. J Cell Biol. 2005;168(2):245–55.PubMedCrossRefGoogle Scholar
  9. Cutts SM, Nudelman A, Rephaeli A, et al. The power and potential of doxorubicin-DNA adducts. IUBMB Life. 2005;57(2):73–81.PubMedCrossRefGoogle Scholar
  10. Cutts SM, Parsons PG, Sturm RA, et al. Adriamycin-induced DNA adducts inhibit the DNA interactions of transcription factors and RNA polymerase. J Biol Chem. 1996;271(10):5422–9.PubMedCrossRefGoogle Scholar
  11. Davies KJ, Doroshow JH. Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. J Biol Chem. 1986;261(7):3060–7.PubMedGoogle Scholar
  12. Dechat T, Shimi T, Adam SA, et al. Alterations in mitosis and cell cycle progression caused by a mutant lamin A known to accelerate human aging. Proc Natl Acad Sci U S A. 2007;104(12):4955–60.PubMedCrossRefGoogle Scholar
  13. Dudnakova TV, Lakomkin VL, Tsyplenkova VG, et al. Alterations in myocardial cytoskeletal and regulatory protein expression following a single doxorubicin injection. J Cardiovasc Pharmacol. 2003;41(5):788–94.PubMedCrossRefGoogle Scholar
  14. Fadeel B, Kagan VE. Apoptosis and macrophage clearance of neutrophils: regulation by reactive oxygen species. Redox Rep. 2003;8(3):143–50.PubMedCrossRefGoogle Scholar
  15. Frost BM, Eksborg S, Bjork O, et al. Pharmacokinetics of doxorubicin in children with acute lymphoblastic leukemia: multi-institutional collaborative study. Med Pediatr Oncol. 2002;38(5):329–37.PubMedCrossRefGoogle Scholar
  16. Gabrielson K, Bedja D, Pin S, et al. Heat shock protein 90 and ErbB2 in the cardiac response to doxorubicin injury. Cancer Res. 2007;67(4):1436–41.PubMedCrossRefGoogle Scholar
  17. Garrido C, Galluzzi L, Brunet M, et al. Mechanisms of cytochrome c release from mitochondria. Cell Death Differ. 2006;13(9):1423–33.PubMedCrossRefGoogle Scholar
  18. Grimmond HE, Beerman T. Alteration of chromatin structure induced by the binding of adriamycin, daunorubicin and ethidium bromide. Biochem Pharmacol. 1982;31(21):3379–86.PubMedCrossRefGoogle Scholar
  19. Hescheler J, Meyer R, Plant S, et al. Morphological, biochemical, and electrophysiological characterization of a clonal cell (H9c2) line from rat heart. Circ Res. 1991;69(6):1476–86.PubMedGoogle Scholar
  20. Iwasaki T, Suzuki T. Ultrastructural alterations of the myocardium induced by doxorubicin. A scanning electron microscopic study. Virchows Arch B Cell Pathol Incl Mol Pathol 1991;60(1):35–9.PubMedCrossRefGoogle Scholar
  21. Jang YM, Kendaiah S, Drew B, et al. Doxorubicin treatment in vivo activates caspase-12 mediated cardiac apoptosis in both male and female rats. FEBS Lett. 2004;577(3):483–90.PubMedCrossRefGoogle Scholar
  22. Jones SM, Kirby MS, Harding SE, et al. Adriamycin cardiomyopathy in the rabbit: alterations in contractile proteins and myocyte function. Cardiovasc Res. 1990;24(10):834–42.PubMedCrossRefGoogle Scholar
  23. Joyeux M, Godin-Ribuot D, Faure P, et al. Heat stress protects against electrophysiological damages induced by acute doxorubicin exposure in isolated rat hearts. Cardiovasc Drugs Ther. 2001;15(3):219–24.PubMedCrossRefGoogle Scholar
  24. Kalyanaraman B, Joseph J, Kalivendi S, et al. Doxorubicin-induced apoptosis: implications in cardiotoxicity. Mol Cell Biochem 2002;234–5(1–2):119–24.CrossRefGoogle Scholar
  25. Kim DS, Kim HR, Woo ER, et al. Inhibitory effects of rosmarinic acid on adriamycin-induced apoptosis in H9c2 cardiac muscle cells by inhibiting reactive oxygen species and the activations of c-Jun N-terminal kinase and extracellular signal-regulated kinase. Biochem Pharmacol. 2005;70(7):1066–78.PubMedCrossRefGoogle Scholar
  26. Kim DS, Woo ER, Chae SW, et al. Plantainoside D protects adriamycin-induced apoptosis in H9c2 cardiac muscle cells via the inhibition of ROS generation and NF-kappaB activation. Life Sci. 2007;80(4):314–23.PubMedCrossRefGoogle Scholar
  27. Kim JE, Han BS, Choi WS, et al. Temporospatial sequence of cellular events associated with etoposide-induced neuronal cell death: role of antiapoptotic protein Bcl-X(L). J Neurosci Res. 2001;66(6):1074–82.PubMedCrossRefGoogle Scholar
  28. Kimes BW, Brandt BL. Properties of a clonal muscle cell line from rat heart. Exp Cell Res. 1976;98(2):367–81.PubMedCrossRefGoogle Scholar
  29. L’Ecuyer T, Horenstein MS, Thomas R, et al. Anthracycline-induced cardiac injury using a cardiac cell line: potential for gene therapy studies. Mol Genet Metab. 2001;74(3):370–9.PubMedCrossRefGoogle Scholar
  30. L’Ecuyer T, Sanjeev S, Thomas R, et al. DNA damage is an early event in doxorubicin-induced cardiac myocyte death. Am J Physiol Heart Circ Physiol. 2006;291(3):H1273–80.PubMedCrossRefGoogle Scholar
  31. Li K, Sung RY, Huang WZ, et al. Thrombopoietin protects against in vitro and in vivo cardiotoxicity induced by doxorubicin. Circulation. 2006;113(18):2211–20.PubMedCrossRefGoogle Scholar
  32. Lieberman J, Fan Z. Nuclear war: the granzyme A-bomb. Curr Opin Immunol 2003;15(5):553–9.PubMedCrossRefGoogle Scholar
  33. Lushnikova EL, Klinnikova MG, Molodykh OP, et al. Morphological manifestations of heart remodeling in anthracycline-induced dilated cardiomyopathy. Bull Exp Biol Med. 2004;138(6):607–12.PubMedCrossRefGoogle Scholar
  34. Menna P, Salvatorelli E, Minotti G. Doxorubicin degradation in cardiomyocytes. J Pharmacol Exp Ther. 2007;322(1):408–19.PubMedCrossRefGoogle Scholar
  35. Merten KE, Jiang Y, Feng W, et al. Calcineurin activation is not necessary for doxorubicin-induced hypertrophy in H9c2 embryonic rat cardiac cells: involvement of the phosphoinositide 3-kinase-Akt pathway. J Pharmacol Exp Ther. 2006;319(2):934–40.PubMedCrossRefGoogle Scholar
  36. Muntoni F. Cardiomyopathy in muscular dystrophies. Curr Opin Neurol. 2003;16(5):577–83.PubMedCrossRefGoogle Scholar
  37. Oliveira PJ, Wallace KB. Depletion of adenine nucleotide translocator protein in heart mitochondria from doxorubicin-treated rats–relevance for mitochondrial dysfunction. Toxicology 2006;220(2–3):160–8.PubMedCrossRefGoogle Scholar
  38. Palle J, Frost BM, Peterson C, et al. Doxorubicin pharmacokinetics is correlated to the effect of induction therapy in children with acute myeloid leukemia. Anticancer Drugs. 2006;17(4):385–92.PubMedCrossRefGoogle Scholar
  39. Park C, So HS, Shin CH, et al. Quercetin protects the hydrogen peroxide-induced apoptosis via inhibition of mitochondrial dysfunction in H9c2 cardiomyoblast cells. Biochem Pharmacol. 2003;66(7):1287–95.PubMedCrossRefGoogle Scholar
  40. Perrot A, Sigusch HH, Nagele H, et al. Genetic and phenotypic analysis of dilated cardiomyopathy with conduction system disease: demand for strategies in the management of presymptomatic lamin A/C mutant carriers. Eur J Heart Fail. 2006;8(5):484–93.PubMedCrossRefGoogle Scholar
  41. Potemski P, Polakowski P, Wiktorowska-Owczarek AK, et al. Amifostine improves hemodynamic parameters in doxorubicin-pretreated rabbits. Pharmacol Rep. 2006;58(6):966–72.PubMedGoogle Scholar
  42. Prasad S, Soldatenkov VA, Srinivasarao G, et al. Intermediate filament proteins during carcinogenesis and apoptosis (Review). Int J Oncol. 1999;14(3):563–70.PubMedGoogle Scholar
  43. Rasola A, Bernardi P. The mitochondrial permeability transition pore and its involvement in cell death and in disease pathogenesis. Apoptosis. 2007;12(5):815–33.PubMedCrossRefGoogle Scholar
  44. Santos DL, Moreno AJ, Leino RL, et al. Carvedilol protects against doxorubicin-induced mitochondrial cardiomyopathy. Toxicol Appl Pharmacol. 2002;185(3):218–27.PubMedCrossRefGoogle Scholar
  45. Schafer ZT, Kornbluth S. The apoptosome: physiological, developmental, and pathological modes of regulation. Dev Cell. 2006;10(5):549–61.PubMedCrossRefGoogle Scholar
  46. Shimasaki H, Ueta N, Mowri HO, et al. Formation of age pigment-like fluorescent substances during peroxidation of lipids in model membranes. Biochim Biophys Acta. 1984;792(2):123–9.PubMedGoogle Scholar
  47. Solem LE, Heller LJ, Wallace KB. Dose-dependent increase in sensitivity to calcium-induced mitochondrial dysfunction and cardiomyocyte cell injury by doxorubicin. J Mol Cell Cardiol. 1996;28(5):1023–32.PubMedCrossRefGoogle Scholar
  48. Spallarossa P, Garibaldi S, Altieri P, et al. Carvedilol prevents doxorubicin-induced free radical release and apoptosis in cardiomyocytes in vitro. J Mol Cell Cardiol. 2004;37(4):837–46.PubMedCrossRefGoogle Scholar
  49. Takemura G, Fujiwara H. Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management. Prog Cardiovasc Dis. 2007;49(5):330–52.PubMedCrossRefGoogle Scholar
  50. Taylor AL, Bulkley BH. Acute adriamycin cardiotoxicity: morphologic alterations in isolated perfused rabbit heart. Lab Invest. 1982;47(5):459–64.PubMedGoogle Scholar
  51. Terman A, Brunk UT. Autophagy in cardiac myocyte homeostasis, aging, and pathology. Cardiovasc Res. 2005;68(3):355–65.PubMedCrossRefGoogle Scholar
  52. Ueno M, Kakinuma Y, Yuhki K, et al. Doxorubicin induces apoptosis by activation of caspase-3 in cultured cardiomyocytes in vitro and rat cardiac ventricles in vivo. J Pharmacol Sci. 2006;101(2):151–8.PubMedCrossRefGoogle Scholar
  53. Unverferth DV, Magorien RD, Unverferth BP, et al. Human myocardial morphologic and functional changes in the first 24 hours after doxorubicin administration. Cancer Treat Rep. 1981;65(11–12):1093–7.PubMedGoogle Scholar
  54. Villani F, Galimberti M, Monti E, et al. Effect of ICRF-187 pretreatment against doxorubicin-induced delayed cardiotoxicity in the rat. Toxicol Appl Pharmacol. 1990;102(2):292–9.PubMedCrossRefGoogle Scholar
  55. von Harsdorf R, Li PF, Dietz R. Signaling pathways in reactive oxygen species-induced cardiomyocyte apoptosis. Circulation. 1999;99(22):2934–41.Google Scholar
  56. Wallace KB. Doxorubicin-induced cardiac mitochondrionopathy. Pharmacol Toxicol. 2003;93(3):105–15.PubMedCrossRefGoogle Scholar
  57. Wattanapitayakul SK, Chularojmontri L, Herunsalee A, et al. Screening of antioxidants from medicinal plants for cardioprotective effect against doxorubicin toxicity. Basic Clin Pharmacol Toxicol. 2005;96(1):80–7.PubMedCrossRefGoogle Scholar
  58. Wayman N, McDonald MC, Thompson AS, et al. 5-Aminoisoquinolinone, a potent inhibitor of poly (adenosine 5'-diphosphate ribose) polymerase, reduces myocardial infarct size. Eur J Pharmacol. 2001;430(1):93–100.PubMedCrossRefGoogle Scholar
  59. Xu MF, Tang PL, Qian ZM, et al. Effects by doxorubicin on the myocardium are mediated by oxygen free radicals. Life Sci. 2001;68(8):889–901.PubMedCrossRefGoogle Scholar
  60. Yan L, Vatner DE, Kim SJ, et al. Autophagy in chronically ischemic myocardium. Proc Natl Acad Sci U S A. 2005;102(39):13807–12.PubMedCrossRefGoogle Scholar
  61. Yue TL, Wang C, Romanic AM, et al. Staurosporine-induced apoptosis in cardiomyocytes: a potential role of caspase-3. J Mol Cell Cardiol. 1998;30(3):495–507.PubMedCrossRefGoogle Scholar
  62. Zhou S, Palmeira CM, Wallace KB. Doxorubicin-induced persistent oxidative stress to cardiac myocytes. Toxicol Lett. 2001;121(3):151–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Vilma A. Sardão
    • 1
  • Paulo J. Oliveira
    • 1
  • Jon Holy
    • 2
  • Catarina R. Oliveira
    • 3
  • Kendall B. Wallace
    • 4
  1. 1.Center for Neurosciences and Cellular Biology, Department of ZoologyUniversity of CoimbraCoimbraPortugal
  2. 2.Department of Anatomy, Microbiology and PathologyUniversity of Minnesota Medical SchoolDuluthUSA
  3. 3.Center for Neurosciences and Cellular Biology, Department of Biochemistry, Medical SchoolUniversity of CoimbraCoimbraPortugal
  4. 4.Department of Biochemistry and Molecular BiologyUniversity of Minnesota Medical SchoolDuluthUSA

Personalised recommendations