Cell Biology and Toxicology

, Volume 23, Issue 1, pp 15–25 | Cite as

Adriamycin-induced oxidative mitochondrial cardiotoxicity

  • J. M. Berthiaume
  • K. B. WallaceEmail author


The anticancer agent Adriamycin (ADR) has long been recognized to induce a dose-limiting cardiotoxicity. Numerous studies have attempted to characterize and elucidate the mechanism(s) behind its cardiotoxic effect. Despite a wealth of data covering a wide-range of effects mediated by the drug, the definitive mechanism remains a matter of debate. However, there is consensus that this toxicity is related to the induction of reactive oxygen species (ROS). Induction of ROS in the heart by ADR occurs via redox cycling of the drug at complex I of the electron transport chain. Many studies support the theory that mitochondria are a primary target of ADR-induced oxidative stress, both acutely and long-term. This review focuses on the effects of ADR redox cycling on the mitochondrion, which support the hypothesis that these organelles are indeed a major factor in ADR cardiotoxicity. This review has been constructed with particular emphasis on studies utilizing cardiac models with clinically relevant doses or concentrations of ADR in the hope of advancing our understanding of the mechanisms of ADR toxicity. This compilation of current data may reveal valuable insights for the development of therapeutic strategies better tailored to minimizing the dose-limiting effect of ADR.


Adriamycin doxorubicin mitochondria reactive oxygen species cardiac mtDNA 





reactive oxygen species


electron transport chain


congestive heart failure


endoplasmic reticulum


mitochondrial permeability transition


adenine nucleotide transporter




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. al-Shabanah OA, Badary OA, Nagi MN, et al. Thymoquinone protects against doxorubicin-induced cardiotoxicity without compromising its antitumor activity. J Exp Clin Cancer Res. 1998;17:193–8.PubMedGoogle Scholar
  2. Anderson AB, Arriaga EA. Subcellular metabolite profiles of the parent CCRF-CEM and the derived CEM/C2 cell lines after treatment with doxorubicin. J Chromatogr B Anal Technol Biomed Life Sci. 2004;808:295–302.Google Scholar
  3. Arcamone F, Franceschi G, Penco S, Selva A. Adriamycin (14-hydroxydaunomycin), a novel antitumor antibiotic. Tetrahedron Lett. 1969;13:1007–10.CrossRefPubMedGoogle Scholar
  4. Ardail D, Privat JP, Egret-Charlier M, et al. Mitochondrial contact sites. Lipid composition and dynamics. J Biol Chem. 1990;265:18797–802.PubMedGoogle Scholar
  5. Arola OJ, Saraste A, Pulkki K, et al. Acute doxorubicin cardiotoxicity involves cardiomyocyte apoptosis. Cancer Res. 2000;60:1789–92.PubMedGoogle Scholar
  6. Bachmann E, Weber E, Zbinden G. Effects of seven anthracycline antibiotics on electrocardiogram and mitochondrial function of rat hearts. Agents Actions. 1975;5:383–93.CrossRefPubMedGoogle Scholar
  7. Bachur NR, Gordon SL, Gee MV. Anthracycline antibiotic augmentation of microsomal electron transport and free radical formation. Mol Pharmacol. 1977;13:901–10.PubMedGoogle Scholar
  8. Bachur NR, Gee MV, Friedman RD. Nuclear catalyzed antibiotic free radical formation. Cancer Res. 1982;42:1078–81.PubMedGoogle Scholar
  9. Barth E, Stammler G, Speiser B, Schaper J. Ultrastructural quantitation of mitochondria and myofilaments in cardiac muscle from 10 different animal species including man. J Mol Cell Cardiol. 1992;24:669–81.CrossRefPubMedGoogle Scholar
  10. Bianchi C, Bagnato A, Paggi MG, Floridi A. Effect of adriamycin on electron transport in rat heart, liver, and tumor mitochondria. Exp Mol Pathol. 1987;46:123–35.CrossRefPubMedGoogle Scholar
  11. Cribb AE, Peyrou M, Muruganandan S, Schneider L. The endoplasmic reticulum in xenobiotic toxicity. Drug Metab Rev. 2005;37:405–42.CrossRefPubMedGoogle Scholar
  12. Davies KJ, Doroshow JH. Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. J Biol Chem. 1986;261:3060–7.PubMedGoogle Scholar
  13. Davies KJ, Doroshow JH, Hochstein P. Mitochondrial NADH dehydrogenase-catalyzed oxygen radical production by adriamycin, and the relative inactivity of 5-iminodaunorubicin. FEBS Lett. 1983;153:227–30.CrossRefPubMedGoogle Scholar
  14. Doroshow JH. Anthracycline antibiotic-stimulated superoxide, hydrogen peroxide, and hydroxyl radical production by NADH dehydrogenase. Cancer Res. 1983a;43:4543–51.Google Scholar
  15. Doroshow JH. Effect of anthracycline antibiotics on oxygen radical formation in rat heart. Cancer Res. 1983b;43:460–72.Google Scholar
  16. Doroshow JH, Davies KJ. Comparative cardiac oxygen radical metabolism by anthracycline antibiotics, mitoxantrone, bisantrene, 4′-(9-acridinylamino)-methanesulfon-m-anisidide, and neocarzinostatin. Biochem Pharmacol. 1983;32:2935–9.CrossRefPubMedGoogle Scholar
  17. Doroshow JH, Davies KJ. Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical. J Biol Chem. 1986;261:3068–74.PubMedGoogle Scholar
  18. Ferrero ME, Ferrero E, Gaja G, Bernelli-Zazzera A. Adriamycin: energy metabolism and mitochondrial oxidations in the heart of treated rabbits. Biochem Pharmacol. 1976;25:125–30.CrossRefPubMedGoogle Scholar
  19. Gewirtz DA. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol. 1999;57:727–41.CrossRefPubMedGoogle Scholar
  20. Goormaghtigh E, Chatelain P, Caspers J, Ruysschaert JM. Evidence of a complex between adriamycin derivatives and cardiolipin: possible role in cardiotoxicity. Biochem Pharmacol. 1980;29:3003–10.CrossRefPubMedGoogle Scholar
  21. Goormaghtigh E, Huart P, Praet M, Brasseur R, Ruysschaert JM. Structure of the adriamycin-cardiolipin complex. Role in mitochondrial toxicity. Biophys Chem. 1990;35:247–57.CrossRefPubMedGoogle Scholar
  22. Gosalvez M, Blanco M, Hunter J, Miko M, Chance B. Effects of anticancer agents on the respiration of isolated mitochondria and tumor cells. Eur J Cancer. 1974;10:567–74.PubMedGoogle Scholar
  23. Green PS, Leeuwenburgh C. Mitochondrial dysfunction is an early indicator of doxorubicin-induced apoptosis. Biochim Biophys Acta. 2002;1588:94–101.PubMedGoogle Scholar
  24. Halestrap AP. Calcium, mitochondria and reperfusion injury: a pore way to die. Biochem Soc Trans. 2006;34:232–7.CrossRefPubMedGoogle Scholar
  25. Hrelia S, Fiorentini D, Maraldi T, et al. Doxorubicin induces early lipid peroxidation associated with changes in glucose transport in cultured cardiomyocytes. Biochim Biophys Acta. 2002;1567:150–6.CrossRefPubMedGoogle Scholar
  26. Ji LL, Mitchell EW. Effects of adriamycin on heart mitochondrial function in rested and exercised rats. Biochem Pharmacol. 1994;47:877–85.CrossRefPubMedGoogle Scholar
  27. Kang YJ, Chen Y, Epstein PN. Suppression of doxorubicin cardiotoxicity by overexpression of catalase in the heart of transgenic mice. J Biol Chem. 1996;271:12610–6.CrossRefPubMedGoogle Scholar
  28. Kang YJ, Chen Y, Yu A, Voss-McCowan M, Epstein PN. Overexpression of metallothionein in the heart of transgenic mice suppresses doxorubicin cardiotoxicity. J Clin Invest. 1997;100:1501–6.PubMedCrossRefGoogle Scholar
  29. Kiyomiya K, Matsuo S, Kurebe M. Differences in intracellular sites of action of adriamycin in neoplastic and normal differentiated cells. Cancer Chemother Pharmacol. 2001;47:51–6.CrossRefPubMedGoogle Scholar
  30. Lebrecht D, Setzer B, Ketelsen UP, Haberstroh J, Walker UA. Time-dependent and tissue-specific accumulation of mtDNA and respiratory chain defects in chronic doxorubicin cardiomyopathy. Circulation. 2003;108:2423–9.CrossRefPubMedGoogle Scholar
  31. Lefrak EA, Pitha J, Rosenheim S, Gottlieb JA. A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer. 1973;32:302–14.CrossRefPubMedGoogle Scholar
  32. Lenaz G, Baracca A, Fato R, Genova ML, Solaini G. New insights into structure and function of mitochondria and their role in aging and disease. Antioxid Redox Signal. 2006;8:417–37.CrossRefPubMedGoogle Scholar
  33. Lipshultz SE, Colan SD, Gelber RD, et al. Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. N Engl J Med. 1991;324:808–15.PubMedCrossRefGoogle Scholar
  34. Marcillat O, Zhang Y, Davies KJ. Oxidative and non-oxidative mechanisms in the inactivation of cardiac mitochondrial electron transport chain components by doxorubicin. Biochem J. 1989;259:181–9.PubMedGoogle Scholar
  35. Mettler FP, Young DM, Ward JM. Adriamycin-induced cardiotoxicity (cardiomyopathy and congestive heart failure) in rats. Cancer Res. 1977;37:2705–13.PubMedGoogle Scholar
  36. Mross K, Maessen P, van der Vijgh WJ, et al. Pharmacokinetics and metabolism of epidoxorubicin and doxorubicin in humans. J Clin Oncol. 1988;6:517–26.PubMedGoogle Scholar
  37. Nicolay K, Fok JJ, Voorhout W, Post JA, de Kruijff B. Cytofluorescence detection of adriamycin-mitochondria interactions in isolated, perfused rat heart. Biochim Biophys Acta. 1986;887:35–41.CrossRefPubMedGoogle Scholar
  38. Oliveira PJ, Santos MS, Wallace KB. Doxorubicin-induced thiol-dependent alteration of cardiac mitochondrial permeability transition and respiration. Biochemistry (Mosc). 2006;71:194–9.CrossRefGoogle Scholar
  39. Palmeira CM, Serrano J, Kuehl DW, Wallace KB. Preferential oxidation of cardiac mitochondrial DNA following acute intoxication with doxorubicin. Biochim Biophys Acta. 1997;1321:101–6.CrossRefPubMedGoogle Scholar
  40. Pan SS, Bachur NR. Xanthine oxidase catalyzed reductive cleavage of anthracycline antibiotics and free radical formation. Mol Pharmacol. 1980;17:95–9.PubMedGoogle Scholar
  41. Porta EA, Joun NS, Matsumura L, Nakasone B, Sablan H. Acute adriamycin cardiotoxicity in rats. Res Commun Chem Pathol Pharmacol. 1983;41:125–37.PubMedGoogle Scholar
  42. Praet M, Ruysschaert JM. In-vivo and in-vitro mitochondrial membrane damages induced in mice by adriamycin and derivatives. Biochim Biophys Acta. 1993;1149:79–85.CrossRefPubMedGoogle Scholar
  43. Robert J, Vrignaud P, Nguyen-Ngoc T, et al. Comparative pharmacokinetics and metabolism of doxorubicin and epirubicin in patients with metastatic breast cancer. Cancer Treat Rep. 1985;69:633–40.PubMedGoogle Scholar
  44. Salvatorelli E, Guarnieri S, Menna P, et al. Defective one- or two-electron reduction of the anticancer anthracycline epirubicin in human heart. Relative importance of vesicular sequestration and impaired efficiency of electron addition. J Biol Chem. 2006;281:10990–1001.CrossRefPubMedGoogle Scholar
  45. Santos DL, Moreno AJ, Leino RL, Froberg MK, Wallace KB. Carvedilol protects against doxorubicin-induced mitochondrial cardiomyopathy. Toxicol Appl Pharmacol. 2002;185:218–27.CrossRefPubMedGoogle Scholar
  46. Schlame M, Rua D, Greenberg ML. The biosynthesis and functional role of cardiolipin. Prog Lipid Res. 2000;39:257–88.CrossRefPubMedGoogle Scholar
  47. Serrano J, Palmeira CM, Kuehl DW, Wallace KB. Cardioselective and cumulative oxidation of mitochondrial DNA following subchronic doxorubicin administration. Biochim Biophys Acta. 1999;1411:201–5.CrossRefPubMedGoogle Scholar
  48. Shinozawa S, Fukuda T, Araki Y, Oda T. Effect of dextran sulfate on the survival time and mitochondrial function of adriamycin (doxorubicin)-treated mice. Toxicol Appl Pharmacol. 1985;79:353–7.CrossRefPubMedGoogle Scholar
  49. Solem LE, Henry TR, Wallace KB. Disruption of mitochondrial calcium homeostasis following chronic doxorubicin administration. Toxicol Appl Pharmacol. 1994;129:214–22.CrossRefPubMedGoogle Scholar
  50. Solem LE, Heller LJ, Wallace KB. Dose-dependent increase in sensitivity to calcium-induced mitochondrial dysfunction and cardiomyocyte cell injury by doxorubicin. J Mol Cell Cardiol. 1996;28:1023–32.CrossRefPubMedGoogle Scholar
  51. Sorensen K, Levitt G, Bull C, Chessells J, Sullivan I. Anthracycline dose in childhood acute lymphoblastic leukemia: issues of early survival versus late cardiotoxicity. J Clin Oncol. 1997;15:61–8.PubMedGoogle Scholar
  52. Spallarossa P, Garibaldi S, Altieri P, et al. Carvedilol prevents doxorubicin-induced free radical release and apoptosis in cardiomyocytes in vitro. J Mol Cell Cardiol. 2004;37:837–46.CrossRefPubMedGoogle Scholar
  53. Stewart DJ, Grewaal D, Green RM, et al. Concentrations of doxorubicin and its metabolites in human autopsy heart and other tissues. Anticancer Res. 1993;13:1945–52.PubMedGoogle Scholar
  54. Sun X, Zhou Z, Kang YJ. Attenuation of doxorubicin chronic toxicity in metallothionein-overexpressing transgenic mouse heart. Cancer Res. 2001;61:3382–7.PubMedGoogle Scholar
  55. Taanman JW. The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta. 1999;1410:103–23.CrossRefPubMedGoogle Scholar
  56. Tokarska-Schlattner M, Zaugg M, da Silva R, et al. Acute toxicity of doxorubicin on isolated perfused heart: response of kinases regulating energy supply. Am J Physiol Heart Circ Physiol. 2005;289:H37–47.CrossRefPubMedGoogle Scholar
  57. Tsang WP, Chau SP, Kong SK, Fung KP, Kwok TT. Reactive oxygen species mediate doxorubicin induced p53-independent apoptosis. Life Sci. 2003;73:2047–58.CrossRefPubMedGoogle Scholar
  58. van Asperen J, van Tellingen O, Tijssen F, Schinkel AH, Beijnen JH. Increased accumulation of doxorubicin and doxorubicinol in cardiac tissue of mice lacking mdr1a P-glycoprotein. Br J Cancer. 1999;79:108–13.CrossRefPubMedGoogle Scholar
  59. Van Houten B, Woshner V, Santos JH. Role of mitochondrial DNA in toxic responses to oxidative stress. DNA Repair (Amst). 2006;5:145–52.CrossRefGoogle Scholar
  60. Von Hoff DD, Layard MW, Basa P, et al. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med. 1979;91:710–7.PubMedGoogle Scholar
  61. Wakasugi S, Fischman AJ, Babich JW, et al. Myocardial substrate utilization and left ventricular function in adriamycin cardiomyopathy. J Nucl Med. 1993;34:1529–35.PubMedGoogle Scholar
  62. Wang GW, Klein JB, Kang YJ. Metallothionein inhibits doxorubicin-induced mitochondrial cytochrome c release and caspase-3 activation in cardiomyocytes. J Pharmacol Exp Ther. 2001;298:461–8.PubMedGoogle Scholar
  63. Wei YH, Lu CY, Wei CY, Ma YS, Lee HC. Oxidative stress in human aging and mitochondrial disease-consequences of defective mitochondrial respiration and impaired antioxidant enzyme system. Chin J Physiol. 2001;44:1–11.PubMedGoogle Scholar
  64. Wencker D, Chandra M, Nguyen K, et al. A mechanistic role for cardiac myocyte apoptosis in heart failure. J Clin Invest. 2003;111:1497–504.CrossRefPubMedGoogle Scholar
  65. Yee SB, Pritsos CA. Comparison of oxygen radical generation from the reductive activation of doxorubicin, streptonigrin, and menadione by xanthine oxidase and xanthine dehydrogenase. Arch Biochem Biophys. 1997;347:235–41.CrossRefPubMedGoogle Scholar
  66. Zagotto G, Gatto B, Moro S, Sissi C, Palumbo M. Anthracyclines: recent developments in their separation and quantitation. J Chromatogr B Biomed Sci Appl. 2001;764:161–71.CrossRefPubMedGoogle Scholar
  67. Zhang J, Clark JR Jr., Herman EH, Ferrans VJ. Doxorubicin-induced apoptosis in spontaneously hypertensive rats: differential effects in heart, kidney and intestine, and inhibition by ICRF-187. J Mol Cell Cardiol. 1996;28:1931–43.CrossRefPubMedGoogle Scholar
  68. Zhou S, Heller LJ, Wallace KB. Interference with calcium-dependent mitochondrial bioenergetics in cardiac myocytes isolated from doxorubicin-treated rats. Toxicol Appl Pharmacol. 2001a;175:60–7.CrossRefGoogle Scholar
  69. Zhou S, Palmeira CM, Wallace KB. Doxorubicin-induced persistent oxidative stress to cardiac myocytes. Toxicol Lett. 2001b;121:151–7.CrossRefGoogle Scholar
  70. Zhou S, Starkov A, Froberg MK, Leino RL, Wallace KB. Cumulative and irreversible cardiac mitochondrial dysfunction induced by doxorubicin. Cancer Res. 2001c;61:771–7.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Toxicology Graduate Program, Medical SchoolUniversity of MinnesotaDuluthUSA
  2. 2.255 Medical SchoolUniversity of MinnesotaDuluthUSA

Personalised recommendations