Cell Biology and Toxicology

, Volume 22, Issue 6, pp 429–438 | Cite as

Antioxidants and metallothionein levels in mercury-treated mice

  • R. Brandão
  • F. W. Santos
  • M. Farina
  • G. Zeni
  • D. Bohrer
  • J. B. T. Rocha
  • C. W. Nogueira


Acute effects of mercury on mouse blood, kidneys, and liver were evaluated. Mice received a single dose of mercuric chloride (HgCl2, 4.6 mg/kg, subcutaneously) for three consecutive days. We investigated the possible beneficial effects of antioxidant therapy (N-acetylcysteine (NAC) and diphenyl diselenide (PhSe)2) compared with the sodium salt of 2,3-dimercapto-1-propanesulfonic acid (DMPS), an effective chelating agent in HgCl2 exposure in mice. We also verified whether metallothionein (MT) induction might be involved in a possible mechanism of protection against HgCl2 poisoning and whether different treatments would modify MT levels and other toxicological parameters. The results demonstrated that HgCl2 exposure significantly inhibited δ-aminolevulinate dehydratase (δ-ALA-D) activity in liver and only DMPS treatment prevented the inhibitory effect. Mercuric chloride caused an increase in renal non-protein thiol groups (NPSH) and none of the treatments modified renal NPSH levels. Urea concentration was increased after HgCl2 exposure. NAC plus (PhSe)2 was partially effective in protecting against the effects of mercury. DMPS and (PhSe)2 were effective in restoring the increment in urea concentration caused by mercury. Thiobarbituric acid-reactive substances (TBARS), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) activities and ascorbic acid levels were not modified after mercury exposure. Mercuric chloride poisoning caused an increase in hepatic and renal MT levels and antioxidant treatments did not modify this parameter. Our data indicated a lack of therapeutic effect of the antioxidants tested.


mercuric chloride metallothionein selenium 2,3-dimercapto-1-propanesulfonic acid N-acetylcysteine 



δ-aminolevulinate dehydratase


alanine aminotransferase


aspartate aminotransferase


Sodium salt of 2,3-dimercapto-1-propanesulfonic acid


dimethyl sulfoxide


gas chromatography


glutathione reductase




high-performance liquid chromatography








non-protein thiol groups


red blood cells


reactive oxygen species




thiobarbituric acid-reactive substances


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aposhian MM, Maiorino RM, Xu Z, Aposhian HV. Sodium 2,3-dimercapto-1-propanesulfonate (DMPS) treatment does not redistribute lead or mecury to the brain of rats. Toxicology. 1996;109:49–55.PubMedCrossRefGoogle Scholar
  2. Aruoma OI, Halliwell B, Hoey BM, Butler J. The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide and hypochlorous acid. Free Rad Biol Med. 1989;6:593–7.PubMedCrossRefGoogle Scholar
  3. ATSDR (Agency for Toxic Substances and Disease Registry). Toxicological profile for mercury. ATSDR/US. Public Health Service; 1989.Google Scholar
  4. Banner W Jr, Koch M, Capin DM, Hopf SB, Chang S, Tong TG. Experimental chelation therapy in chromium, lead and boron intoxication with N-acetylcysteine and other compounds. Toxicol Appl Pharmacol. 1986;83:142–7.PubMedCrossRefGoogle Scholar
  5. Barbosa NBV, Rocha JBT, Zeni G, Emanuelli T, Beque MC, Braga AL. Effect of organic forms of selenium on δ-aminolevulinate dehydratase from liver, kidney and brain of adult rats. Toxicol Appl Pharmacol. 1998;149:243–53.PubMedCrossRefGoogle Scholar
  6. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principles of protein-dye binding. Anal Biochem. 1976;72:248–54.PubMedCrossRefGoogle Scholar
  7. Brandão R, Santos FW, Zeni G, Rocha JBT, Nogueira CW. DMPS and N-acetylcysteine induced renal toxicity in mice exposed to mercury. Biometals. 2006; 19(4):389–98.PubMedCrossRefGoogle Scholar
  8. Chatterjee GC, Rudra Pal D. Metabolism of L- ascorbic acid in rats under in vivo administration of mercury: effect of L-ascorbic acid supplementation. Int J Vitam Nutr Res. 1975;45:284–92.PubMedGoogle Scholar
  9. Cousin RJ. Metallothionein-aspects related to copper and zinc metabolism. J Inherit Metab Dis. 1983;6:15.CrossRefGoogle Scholar
  10. Draper HH, Hadley M. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol. 1990;186:421–31.PubMedCrossRefGoogle Scholar
  11. Ellman GL. Tissue sulfhydryl groups. Arch Biochem. 1959;82:70–7.PubMedCrossRefGoogle Scholar
  12. Emanuelli T, Rocha JBT, Pereira ME, et al. Effect of mercury chloride intoxication and dimercaprol treatment on udelta-aminolevulinate dehydratase from brain, liver and kidney of adult mice. Pharmacol Toxicol. 1996;79:136–43.PubMedCrossRefGoogle Scholar
  13. Farina M, Brandão R, Lara FS, Soares FA, Souza DO, Rocha JBT. Profile of non-protein thiols, lipid peroxidation and udelta aminolevulinate dehydratase activity in mouse kidney and liver in response to acute exposure to mercuric chloride and sodium selenite. Toxicology. 2003;184:179–87.PubMedCrossRefGoogle Scholar
  14. Flora SJS, Kumar P. Biochemical and immunotoxicological evaluation of metal chelating drugs in rats. Drug Invest. 1993;5:269–73.Google Scholar
  15. Huang YL, Cheng SL, Lin TH. Lipid peroxidation in rats administrated with mercury chloride. Biol Trace Elem Res. 1996;52:193–206.PubMedGoogle Scholar
  16. Hussain S, Atkinson A, Thompson SJ, Khan AT. Accumulation of mercury and its effect on antioxidant enzymes in brain, liver and kidneys of mice. J Environ Sci Health. 1999;34:645–60.CrossRefGoogle Scholar
  17. Jacques-Silva MC, Nogueira CW, Broch LC, Flores EM, Rocha JBT. Diphenyl diselenide and ascorbic acid changes deposition of selenium and ascorbic acid in liver and brain of mice. Pharmacol Toxicol. 2001;88:119–25.PubMedCrossRefGoogle Scholar
  18. Kagi JHR, Nordberg M. Metallothionein. Verlag Basel: Birkhauser; 1979:56–65.Google Scholar
  19. Kemper FH, Jekat FW, Bertram HP, Eckard R. New chelating agents. In: Volans GM, Sims J, Sullivan FM, Turner P, eds. Basic science in toxicology. London: Taylor & Francis; 1990:523–46.Google Scholar
  20. Lash LH, Zalups RK. Alterations in renal cellular glutathione metabolism after in vivo administration of subtoxic dose of mercuric chloride. J Biochem Toxicol. 1996;11:1–9.PubMedCrossRefGoogle Scholar
  21. Lynn S, Yu GL, Jan KY. Vicinal-thiol-containing molecules enhance but mono-thiol-containing molecules reduce nickel-induced DNA strand breaks. Toxicol Appl Pharmacol. 1999;160:198–205.PubMedCrossRefGoogle Scholar
  22. Miles AT, Hawksworth GM, Beattie JH, Rodilla V. Induction, regulation, degradation, and biological significance of mammalian metallothioneins. Crit Rev Biochem Mol Biol. 2000;35:35–70.PubMedCrossRefGoogle Scholar
  23. Meotti FC, Stangherlin EC, Zeni G, Nogueira CW, Rocha JBT. Protective role of aryl and alkyl diselenides on lipid peroxidation. Environ Res. 2004;94:276–82.PubMedCrossRefGoogle Scholar
  24. Moldeus P, Cotgreave IA, Berggren M. Lung protection by a thiol-containing antioxidant: N-acetylcysteine. Respiration. 1986;50:31–42.PubMedGoogle Scholar
  25. Nogueira CW, Soares FA, Nascimento PC, Muller D, Rocha JBT. 2,3-Dimercaptopropane-1-sulfonic acid and meso-2,3-dimercaptosuccinic acid increase mercury- and cadmium-induced inhibition of δ-aminolevulinate dehydratase. Toxicology. 2003a; 184:85–95.CrossRefGoogle Scholar
  26. Nogueira CW, Meotti FC, Curte E, Pilissão C, Zeni G, Rocha JBT. Investigations into the potential neurotoxicity induced by diselenides in mice and rats. Toxicology. 2003b;183:29–37.CrossRefGoogle Scholar
  27. Nogueira CW, Santos FW, Soares FA, Rocha JBT. 2,3-Dimercaptopropane-1-sulfonic acid and meso-2,3-dimer-captosuccinic acid inhibit δ-aminolevulinate dehydratase from human erythrocytes in vitro. Environ Res. 2004a; 94:254–61.CrossRefGoogle Scholar
  28. Nogueira CW, Zeni G, Rocha JBT. Organoselenium and organotellurium compounds: toxicology and pharmacology. Chem Rev. 2004b; 104:6255–86.CrossRefGoogle Scholar
  29. Onosaka S, Cherian MG. Comparison of metallothionein determination by polarographic and cadmium-saturation methods. Toxicol Appl Pharmacol. 1982;63:270–4.PubMedCrossRefGoogle Scholar
  30. Paulmier C. Selenoorganic functional groups. In: Paulmier, C., ed. Selenium reagents and intermediates in organic synthesis. Oxford: Pergamon Press; 1986:25–51.Google Scholar
  31. Perottoni J, Rodrigues OED, Paixão MW,et al. Renal and hepatic ALA-D activity and selected oxidative stress parameters of rats exposed to inorganic mercury and organoselenium compounds. Food Chem Toxicol. 2004;42:17–28.CrossRefGoogle Scholar
  32. Salgado PET. Toxicologia dos metais. In: Oga S, ed. Fundamentos de Toxicologia. São Paulo, Brazil: Editora Atheneu. 1996;153–72.Google Scholar
  33. Santos FW, Oro T, Zeni G, Rocha JBT, de Nascimento PC, Nogueira CW. Cadmium induced testicular damage and its response to administration of succimer and diphenyl diselenide in mice. Toxicol Lett. 2004;152:255–63.PubMedCrossRefGoogle Scholar
  34. Sassa S. Delta-aminolevulinic acid dehydratase assay. Enzyme. 1982;28:133–45.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • R. Brandão
    • 1
  • F. W. Santos
    • 1
  • M. Farina
    • 1
    • 2
  • G. Zeni
    • 1
  • D. Bohrer
    • 1
  • J. B. T. Rocha
    • 1
  • C. W. Nogueira
    • 1
  1. 1.Departamento de Quimica, Centro de Ciencias Naturais e ExatasUniversidade Federal de Santa MariaSanta MariaBrazil
  2. 2.Departamento de Bioquímica, Centro de Ciências BiológicasUniversidade Federal de CatarinaFlorianópolisBrazil

Personalised recommendations