Advertisement

Cell Biology and Toxicology

, Volume 22, Issue 4, pp 285–291 | Cite as

Protective effects of β-glucan extracted from Agaricus brasiliensis against chemically induced DNA damage in human lymphocytes

  • J. P. F Angeli
  • L. R. Ribeiro
  • M. L. C. Gonzaga
  • S. de A. Soares
  • M. P. S. N. Ricardo
  • M. S. Tsuboy
  • R. Stidl
  • S. Knasmueller
  • R. E. Linhares
  • M. S. Mantovani
Article

Abstract

β-Glucans (BGs) are polysaccharides that are found in the cell walls of organisms such as bacteria, fungi, and some cereals. The objective of the present study was to investigate the genotoxic and antigenotoxic effects of BG extracted from the mushroom Agaricus brasiliensis (= Agaricus blazei Murrill ss. Heinemann). The mutagenic activity of BG was tested in single-cell gel electrophoresis assays with human peripheral lymphocytes. In addition, the protective effects against the cooked food mutagen 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) and (+/−)-anti-B[a]P-7,8-dihydrodiol-9,10-epoxide (BPDE), which is the main metabolite of B[a]P, and against ROS (H2O2)-induced DNA damage, were studied. The results showed that the compound itself was devoid of mutagenic activity, and that a significant dose-dependent protective effect against damage induced by hydrogen peroxide and Trp-P-2 occurred in the dose range 20–80 μg/ml. To investigate the prevention of Trp-P-2-induced DNA damage, a binding assay was carried out to determine whether BG inactivates the amine via direct binding. Since no such interactions were observed, it is likely that BG interacts with enzymes involved in the metabolism of the amine.

Keywords

Agaricus brasiliensis BPDE comet assay β-glucan hydrogen peroxide Trp-P-2 

Abbreviations

PBS

phosphate-buffered saline

FTIR

Fourier transform infrared

HPLC

high-performance liquid chromatography

SCGE

single-cell gel electrophoresis

HA

heterocyclic aromatic amine

BG

β-glucan

BPDE

(+/−)-anti-B[a]P-7,8-dihydrodiol-9,10-epoxide

(Trp-P-2)

3-amino-1-methyl-5H-pyrido[4,3-b]indole

ROS

reactive oxygen species

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellini MF, Giacomini NL, Eira AF, Ribeiro LR, Mantovani MS. Anticlastogenic effect of aqueous extracts of Agaricus blazei on CHO-k1 cells, studying different developmental phases of the mushroom. Toxicol In Vitro. 2003,17:465–9.PubMedCrossRefGoogle Scholar
  2. Bellini MF, Angeli JPF, Matuo R., Terezan, AP, Ribeiro LR., Mantovani MS. Antigenotoxicity of Agaricus blazei mushroom organic and aqueous extracts in chromosomal aberration and cytokinesis block micronucleus assays in CHO-k1 and HTC cells. Toxicol In Vitro. 2006;20:355–60.PubMedCrossRefGoogle Scholar
  3. Dashwood RH. Modulation of heterocyclic amine-induced mutagenicity and carcinogenicity: an ‘A-to-Z’ guide to chemopreventive agents, promoters and transgenic models. Mutat Res. 2002;511: 89–112.PubMedCrossRefGoogle Scholar
  4. Delmanto RD, De Lima PLA, Sugui MM, et al. Antimutagenic effect of Agaricus blazei Murrill mushroom on the genotoxicity induced by cyclophosphamide. Mutat Res. 2001;496:15–21.PubMedGoogle Scholar
  5. Ferguson LR, Roberton AM, Watson ME, Kestell P, Harris PJ. The adsorption of a range of dietary carcinogens by alpha-cellulose, a model insoluble dietary fiber. Mutat Res. 1993;319:257–66.PubMedCrossRefGoogle Scholar
  6. Gonzaga MLC, Ricardo NMPS, Heatley F, Soares S de A. Isolation and characterization of polysaccharides from Agaricus blazei Murill. Carbohydr Polym. 2005a;60: 3–49.CrossRefGoogle Scholar
  7. Gonzaga MLC, Menezes TMF, Ricardo NMPS, Sandra AS. Isolation, characterization and evaluation of the capacity of solubilization of drugs of isolated polysaccharides from mushroom Agaricus blazei Murill. Presented at the 8th Brazilian Polymer Congress, águas de Lindóia, São Paulo. Proceedings in CD Rom. 2005b.Google Scholar
  8. Guterrez ZR, Mantovani MS, Eira AF, Ribeiro LR, Jordao BQ. Variation of the antimutagenicity effects of water extracts of Agaricus blazei Murrill in vitro. Toxicol In Vitro. 2004;18:301–9.PubMedCrossRefGoogle Scholar
  9. Hashimoto T, Nonaka Y, Minato K, et al. Suppressive effect of polysaccharides from the edible and medicinal mushrooms, Lentinus edodes and Agaricus blazei, on the expression of cytochrome P450s in mice. Biosci Biotechnol Biochem. 2002;66:1610–1614. auq (11) Should pages be 1610–4 or 610–4?Google Scholar
  10. Helma C, Uhl M. A public domain image-analysis program for the single-cell gel electrophoresis (comet) assay. Mutat Res. 2000;466:9–15.PubMedGoogle Scholar
  11. Lazarova M, Labaj J, Kovacikova Z, Slamenova D. Diet containing fungal (1→3)-β-glucan derivative exhibits protective effects against DNA lesions induced in freshly isolated rat cells. Neoplasma. 2004;51:431–5.PubMedGoogle Scholar
  12. Lindl T, Bauer J. 1993. Zell- und Gewebekultur. Stuttgart, Gustav Fischer Verlag, Jena, New York. auq (12) What is the publisher's name?Google Scholar
  13. Luiz RC, Jordão BQ, Eira AF, Ribeiro LR, Mantovani MS. Mechanism of anticlastogenicity of Agaricus blazei Murrill mushroom organic extracts in wild type CHO(k1) and repair deficient (xrs5) cells by chromosome aberration and sister chromatid exchange assays. Mutat Res. 2003a;528:75–9.Google Scholar
  14. Luiz RC, Jordão BQ, Eira AF, Ribeiro LR, Mantovani MS. Non-mutagenic or genotoxic effects of medicinal aqueous extracts from the Agaricus blazei mushroom in V79 cells. Cytologia. 2003b;68:1–6.CrossRefGoogle Scholar
  15. Menoli RCN, Mantovani MS, Ribeiro LR, Gunter S, Jordão BQ. Antimutagenic effects of the mushroom Agaricus blazei Murill extracts on V79 cells. Mutat Res. 2001;496:5–13.PubMedGoogle Scholar
  16. Mizuno T. Bioactive biomolecules of mushrooms–food, function and medicinal effect of mushroom fungi. Food Rev Int. 1995;11(1):7–21.Google Scholar
  17. Muchove JJ and Muchove RMC. Noções básicas de microbiologia. Minas Gerais: Editora Folha de Viçosa; 1989.Google Scholar
  18. Okamoto T, Kodoi R, Nonaka Y, et al. Lentinan from shiitake mushroom (Lentinus edodes) suppresses expression of cytochrome P450 1A subfamily in the mouse liver. Biofactors. 2004;21:407–9.PubMedGoogle Scholar
  19. Oliveira JM, Jordão BQ, Ribeiro LR, Eira AF, Mantovani MS. Anti-genotoxic effect of aqueous extracts of sun mushroom (Agaricus blazei Murill lineage 99/26) in mammalian cells in vitro. Food Chem Toxicol. 2002;40:15–20.Google Scholar
  20. Reynolds JA, Kastello MD, Harrigton DG, et al. Glucan-induced enhancement of host resistance to selected infectious diseases. Infect Immun. 1980;30:51–7.PubMedGoogle Scholar
  21. Schwab CE, Huber WW, Parzefall W, et al. Search for compounds that inhibit the genotoxic and carcinogenic effects of heterocyclic aromatic amines. Crit Rev Toxicol. 2000;30:1–69.PubMedCrossRefGoogle Scholar
  22. Singh NP, McCoy MT, Tice RR, Ishidate M Jr, Schneider EL. A simple technique for quantification of low levels of DNA damage in individual cells. Exp Cell Res. 1988;175:184–191.PubMedCrossRefGoogle Scholar
  23. Speit G, Hartmann A. The comet assay: a sensitive genotoxicity test for the detection of DNA damage. Methods Mol Biol. 2005;291:85–95.PubMedGoogle Scholar
  24. Steinkellner H, Rabot S, Freywald C, et al. Effects of cruciferous vegetables and their constituents on drug metabolizing enzymes involved in the bioactivation of DNA-reactive dietary carcinogens. Mutat Res. 2001;480:285–7.PubMedGoogle Scholar
  25. Tohamy AA, El-Ghor AA, El-Nahas SM, Noshy MM. β-Glucan inhibits the genotoxicity of cyclophosphamide, adriamycin and cisplatin. Mutat Res. 2003;541:45–53.PubMedGoogle Scholar
  26. Tzianabos AO and Cisneros L. Prophylaxis with the immunomodulator PGG glucan enhances antibiotic efficacy in rats infected with antibiotic-resistant bacteria. Ann NY Acad Sci. 1996;797:285–287.PubMedGoogle Scholar
  27. Williams GM, Williams CM, Weisburger JH. Diet and cancer prevention: the fiber first diet. Toxicol Sci. 1999;52:72–86.PubMedGoogle Scholar
  28. Yoshioka Y, Tabeta R, Saitó H, Uehara N, Fukuoka F. Antitumor polysaccharides from P. ostreatus (Fr.) Quel.: isolation and structure of a beta-glucan. Carbohydr Res. 1985;140:93– 100.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • J. P. F Angeli
    • 1
  • L. R. Ribeiro
    • 3
  • M. L. C. Gonzaga
    • 4
  • S. de A. Soares
    • 4
  • M. P. S. N. Ricardo
    • 4
  • M. S. Tsuboy
    • 5
  • R. Stidl
    • 6
  • S. Knasmueller
    • 7
  • R. E. Linhares
    • 2
  • M. S. Mantovani
    • 1
    • 8
  1. 1.Departamento de Biologia GeralUniversidade Estadual de LondrinaLondrinaBrazil
  2. 2.Departamento de MicrobiologiaUniversidade Estadual de LondrinaLondrinaBrazil
  3. 3.Programa de Pós-Graduação em Biologia Celular e Molecular, Depto. de BiologiaUNESPRio ClaroBrazil
  4. 4.Departamento de Química Orgânica e InorgânicaUniversidade Federal do CearáFortalezaBrazil
  5. 5.Departamento de Biologia GeralUNESPAssisBrazil
  6. 6.Institute of Analytical Chemistry and Food ChemistryUniversity of ViennaViennaAustria
  7. 7.Institute of Cancer ResearchMedical University of ViennaViennaAustria
  8. 8.Departamento de Biologia Geral – CCBUniversidade Estadual de Londrina – Campus UniversitárioLondrinaBrazil

Personalised recommendations