Advertisement

Mechanistic Study of Catalase- and Superoxide Dismutation-Mimic Activities of Cobalt Oxide Nanozyme from First-Principles Microkinetic Modeling

  • Sibei Guo
  • Yu Han
  • Ling GuoEmail author
Article
  • 8 Downloads

Abstract

Cobalt oxide (Co3O4) has attracted considerable interest because of its high catalytic activity, especially for intrinsic catalase (CAT)-mimic and superoxide dismutation (SOD)-mimic activities. However, understanding of its catalytic mechanism from atomic or molecular level remains limited. Here, we propose base-like dissociative, acid-like dissociative and bi-hydrogen peroxide associative mechanisms of CAT-mimic activity, Langmuir–Hinshelwood (LH) and Eley–Rideal (ER) mechanisms of SOD-mimic activity on cobalt oxide surface with atomistic thermodynamic and kinetic details by a combination of rigorous density functional theory and microkinetic modeling. The catalytic activity of Co3O4 depends strongly on their size and structure. In this study, Co3O4 nanozyme with different size and structure exhibited different catalytic activities in the order of (Co3O4)2 > (Co3O4)3 > Co3O4. This order is closely related to their weak, tunable Co–O bonds. Our microkinetic modeling analysis shows that bi-hydrogen peroxide associative mechanisms (mechanism C) of CAT-mimic activity and ER mechanism of SOD-mimic activity for (Co3O4)2 are favorable, which is identified by the rate-determining steps (RDS), Energy span model (ESM), and microkinetic modeling analysis. For the CAT-mimic activities on (Co3O4)n surface, Campbell’s degree of rate control analysis indicates the key to catalyst improvement and design is to stabilize the key steps, which are related to the formation of H2O molecular. For the SOD-mimic activities of (Co3O4)n, we find the formation of H2O2 molecular to be the sole rate-controlling step. Degree of the thermodynamic rate control analysis reveals that the stronger H2O2*, OH* binding would facilitate the reaction of CAT-like activities of (Co3O4)n. And the adsorbed OHOO* with large negative degree of thermodynamic rate control would inhibit the reaction of CAT-like activities of (Co3O4)n. Our results have not only provided new insights into deciphering (Co3O4)n artificial enzymes, but will also facilitate the design and construction of other types of target-specific artificial enzymes.

Keywords

Cobalt oxide nanozyme Catalytic mechanism Catalase-mimic and superoxide dismutation-mimic activities Microkinetic modeling 

Notes

Acknowledgements

This work was financially supported by the “1331” project of Shanxi Province, High School 131 Leading Talent Project of Shanxi, the Natural Science Foundation of Shanxi, and Undergraduate Training Programs for Innovation and Entrepreneurship of Shanxi Province, Graduate student Innovation Project of Shanxi Normal University, Shanxi Graduate Education Innovation Project.

Supplementary material

10563_2019_9290_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 17 kb)
10563_2019_9290_MOESM2_ESM.docx (16 kb)
Supplementary material 2 (DOCX 15 kb)

References

  1. 1.
    Singh R, Singh S (2019) Colloids Surf B 175:625–635CrossRefGoogle Scholar
  2. 2.
    Bhagat S, Srikanth Vallabani NV, Shutthanandan V, Bowden M, Karakoti AS, Singh S (2018) J Colloid Interface Sci 513:831–842PubMedCrossRefGoogle Scholar
  3. 3.
    Singh S (2019) Front Chem 7:46PubMedCentralCrossRefGoogle Scholar
  4. 4.
    Halliwell B, Gutteridge JMC (1990) Method Enzymol 186:1–85CrossRefGoogle Scholar
  5. 5.
    Giorgio M, Trinei M, Migliaccio E, Pelicci PG (2007) Nat Rev Mol Cell Bio 8:722–728CrossRefGoogle Scholar
  6. 6.
    Brioukhanov A, Netrusov A (2004) Biochemistry (Moscow) 69:949–962CrossRefGoogle Scholar
  7. 7.
    Su H, Liu DD, Zhao M, Hu WL, Xue SS, Cao Q, Le XY, Ji LN, Mao ZW (2015) ACS Appl Mater Interfaces 7:8233–8242PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Int J Biochem Cell Biol 39:44–84PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nature 407:496–499CrossRefGoogle Scholar
  10. 10.
    Hutchins MG, Wright PJ, Grebenik PD (1987) Sol Energy Mater 16:113–116CrossRefGoogle Scholar
  11. 11.
    Li WY, Xu LN, Chen J (2005) Adv Funct Mater 15:851–857CrossRefGoogle Scholar
  12. 12.
    Maruyama T, Arai S (1996) J Electrochem Soc 143:1383–1388CrossRefGoogle Scholar
  13. 13.
    Jiang DE, Dai S (2011) Phys Chem Chem Phys 13:978–984PubMedCrossRefGoogle Scholar
  14. 14.
    Tao FF, Shan JJ, Nguyen L, Wang Z, Zhang S, Zhang L, Wu Z, Huang W, Zeng S, Hu P (2015) Nat Commun 6:7798PubMedCrossRefGoogle Scholar
  15. 15.
    Tyo EC, Yin C, Di Vece M, Qian Q, Kwon G, Lee S, Lee B, DeBartolo JE, Seifert S, Winans RE, Si R, Ricks B, Goergen S, Rutter M, Zugic B, Flytzani-Stephanopoulos M, Wang ZW, Palmer RE, Neurock M, Vajda S (2012) ACS Catal 2:2409–2423CrossRefGoogle Scholar
  16. 16.
    Fung V, Tao F, Jiang D (2016) Catal Sci Technol 6:6861–6869CrossRefGoogle Scholar
  17. 17.
    Zhang S, Shan JJ, Zhu Y, Frenkel AI, Patlolla A, Huang W, Yoon SJ, Wang L, Yoshida H, Takeda S, Tao F (2013) J Am Chem Soc 135:8283–8293PubMedCrossRefGoogle Scholar
  18. 18.
    Xie XW, Li Y, Liu ZQ, Haruta M, Shen WJ (2009) Nature 458:746–749PubMedCrossRefGoogle Scholar
  19. 19.
    Mu J, Wang Y, Zhao M, Zhang L (2012) Chem Commun 48:2540–2542CrossRefGoogle Scholar
  20. 20.
    Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Nat Nanotechnol 2:577–583CrossRefGoogle Scholar
  21. 21.
    Mu J, Li J, Zhao X, Yang E, Zhao X (2018) Sens Actuators B 258:32–41CrossRefGoogle Scholar
  22. 22.
    Yin J, Cao H, Lu Y (2012) J Mater Chem 22:527–534CrossRefGoogle Scholar
  23. 23.
    Mu J, Zhang L, Zhao M, Wang Y (2014) ACS Appl Mater Interfaces 6:7090–7099PubMedCrossRefGoogle Scholar
  24. 24.
    Mu J, Zhang L, Zhao M, Wang Y (2014) Phys Chem Chem Phys 16:15709–15716PubMedCrossRefGoogle Scholar
  25. 25.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA (2009) Gaussian 09, Revision A.1, Gaussian, Wallingford, CTGoogle Scholar
  27. 27.
    Jirkovsky JS, Busch M, Ahlberg E, Panas I, Krtil P (2011) J Am Chem Soc 133:5882–5892PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Liu X, Prewitt CT (1990) Phys Chem Miner 17:168–172CrossRefGoogle Scholar
  29. 29.
    Selcuk S, Selloni A (2015) J Phys Chem C 119:9973–9979CrossRefGoogle Scholar
  30. 30.
    Lide DR (2003) Handbook of chemistry and physics. CRC Press, Boca RatonGoogle Scholar
  31. 31.
    Piskorz W, Zasada F, Stelmachowski P, Kotarba A, Sojka Z (2008) Catal Today 137:418–422CrossRefGoogle Scholar
  32. 32.
    Shojaee K, Montoya A, Haynes BS (2013) Comput Mater Sci 72:15–25CrossRefGoogle Scholar
  33. 33.
    Guo R, Wang H, Peng C, Shen M, Pan M, Cao X, Zhang G, Shi X (2010) J Phys Chem C 114:50–56CrossRefGoogle Scholar
  34. 34.
    Amatore C, Jutand A (1999) J Organomet Chem 576:254–278CrossRefGoogle Scholar
  35. 35.
    Kozuch S, Shaik S (2006) J Am Chem Soc 128:3355–3365PubMedCrossRefGoogle Scholar
  36. 36.
    Ma L, Melander M, Weckman T, Laasonen K, Akola J (2016) J Phys Chem C 120:26747–26758CrossRefGoogle Scholar
  37. 37.
    Wynne-Jones WFK, Eyring H (1935) J Chem Phys 3:492–502CrossRefGoogle Scholar
  38. 38.
    Slesak I, Lesak HS, Zimak-Piekarczyk P, Rozp-ądek P (2016) Astrobiology 16:348–352PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Zhang W, Hu S, Yin JJ, He W, Lu W, Ma M, Gu N, Zhang Y (2016) J Am Chem Soc 138:5860–5865PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Huber KP, Herzberg G (1979) Molecular spectra and molecular structure. Van Nostrand Reinhold, New YorkCrossRefGoogle Scholar
  41. 41.
    Wang W, Wang Y, Wang G (2018) Phys Chem Chem Phys 20:2492–2507PubMedCrossRefGoogle Scholar
  42. 42.
    Kozuch S, Shaik S (2011) Acc Chem Res 44:101–110PubMedCrossRefGoogle Scholar
  43. 43.
    Mishra PC, Singh AK, Suhai S (2005) Int J Quantum Chem 102:282–301CrossRefGoogle Scholar
  44. 44.
    Haraguchi H, Ishikawa H, Mizutani K, Tamura Y, Kinoshita T (1998) Med Chem 6:339–347CrossRefGoogle Scholar
  45. 45.
    Lin WS, Armstrong DA, Lal M (1978) Int J Radiat Bio 33:231–243Google Scholar
  46. 46.
    Bielski BHJ, Cabelli DE, Arudi RL, Ross AB (1985) J Phys Chem Ref Data 14:1041CrossRefGoogle Scholar
  47. 47.
    Weinberg WH (1996) Acc Chem Res 29:479–487CrossRefGoogle Scholar
  48. 48.
    Campbell CT (2017) ACS Catal 7:2770–2779CrossRefGoogle Scholar
  49. 49.
    Stegelmann C, Andreasen A, Campbell CT (2009) J Am Chem Soc 131:8077–8082PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The Second Clinical Medical College of Shanxi Medical UniversityTaiyuanChina
  2. 2.Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material ScienceShanxi Normal UniversityLinfenChina

Personalised recommendations