Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

A Review on Pd Based Catalysts for CO2 Hydrogenation to Methanol: In-Depth Activity and DRIFTS Mechanistic Study

  • 412 Accesses

  • 1 Citations

Abstract

Global warming, the environmental curse, created mainly by anthropogenic uses of fossil resources causing an excessive amount of CO2 emission in the earth’s atmosphere. Scientists are focusing to utilize CO2 to produce value added chemicals, i.e. methanol, DME, formic acid, etc. to reduce the effect of this greenhouse gas (GHG) and also provide an alternative carbon source and carbon neutral pathway for valuable chemicals. Despite significant achievements so far on the conversion of CO2 to methanol via hydrogenation over Cu–ZnO–Al2O3 catalyst, palladium and palladium based bimetallic catalysts showed a superior activity (> 10% CO2 conversion) and selectivity (~ 100%) to methanol over Cu based catalysts especially at low pressure (≤ 30 bar) and low temperature (≤ 250 °C). The alloying effect of Pd with the support ZnO, ZrO2, Ga2O3, etc. forming PdZn, PdZr2, PdGa species, which are identified as the main active phase of methanol synthesis. Also, reducible oxidic supports like CeO2, ZrO2, Ga2O3, etc. played important roles in adsorbing and activating CO2 as CO and or CO3 over the surface and hydrogenated to formate species, which has been regarded as the pivotal intermediate for methanol synthesis. Though there are challenges involving the costs of noble metal palladium, hydrogen production from renewable sources and carbon capture and storage (CSS) processes. There are several review articles on CO2 hydrogenation to methanol in the past few years but none of the existing review articles uniquely dealt with Pd-based catalysts. On this premise, this article presents a brief review comprising catalytic activity of Pd and Pd based bimetallic catalysts, effects of supports and promoters, reaction mechanism (DRIFTS studies) and perspectives on future researches necessary to achieve industrial acceptability of Pd-based catalyst for CO2 hydrogenation to methanol.

Graphic Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  1. 1.

    British Petroleum (2018) Statistical review of world energy, London. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2018-full-report.pdf

  2. 2.

    International Energy Agency (2018) World Energy Outlook. https://www.iea.org/weo2018

  3. 3.

    Kätelhön A, Meys R, Deutz S, Suh S, Bardow A (2019) Proc Natl Acad Sci 8:201821029

  4. 4.

    Princiotta F (ed) (2011) Global climate change—the technology challenge. Springer, Amsterdam

  5. 5.

    Sanz-Perez ES, Murdock CR, Didas SA, Jones CW (2016) Chem Rev 116:11840

  6. 6.

    Boot-Handford ME, Abanades JC, Anthony EJ, Blunt MJ, Brandani S, Mac Dowell N, Fernández JR, Ferrari MC, Gross R, Hallett JP, Haszeldine RS (2014) Energy Environ Sci 7:130

  7. 7.

    Irish JL, Sleath A, Cialone MA, Knutson TR, Jensen RE (2014) Clim Change 122:635

  8. 8.

    Olah GA, Goeppert A, Prakash GS (2011) Beyond oil and gas: the methanol economy, 2nd edn. Wiley, New York

  9. 9.

    Bill Hare HC, Blok K, Hohne N (2018) Some Progress Since Paris, but Not Enough, as Governments Amble Towards 3◦ C of Warming, Climate Action Tracker, https://climateactiontracker.org/publications/warming-projections-global-update-dec-2018

  10. 10.

    Bobicki ER, Liu Q, Xu Z, Zeng H (2012) Prog Energy Combust Sci 38:302

  11. 11.

    Rahman FA, Aziz MM, Saidur R, Bakar WA, Hainin MR, Putrajaya R, Hassan NA (2017) Renew Sustain Energy Rev 71:112

  12. 12.

    Lin H, He Z, Sun Z, Kniep J, Ng A, Baker RW, Merkel TC (2015) J Membrane Sci 493:794

  13. 13.

    Jadhav SG, Vaidya PD, Bhanage BM, Joshi JB (2014) Chem Eng Res Des 92:2557

  14. 14.

    Centi G, Perathoner S (2009) Catal Today 148:191

  15. 15.

    Midilli A, Ay M, Dincer I, Rosen MA (2005) Renew Sustain Energy Rev 9:255

  16. 16.

    Olah GA (2005) Angew Chem Int Ed 44:2636

  17. 17.

    Dalena F, Senatore A, Basile M, Knani S, Basile A, Lulianelli A (2018) Membranes 8:98

  18. 18.

    Parthasarathy P, Narayanan KS (2014) Renew Energy 66:570

  19. 19.

    Bičáková O, Straka P (2012) Int J Hydrogen Energy 37:11563

  20. 20.

    Gaudernack B, Lynum S (1998) Int J Hydrogen Energy 23:1087

  21. 21.

    Dincer I, Acar C (2015) Int J Hydrogen Energy 40:11094

  22. 22.

    Markit HIS (2017) 35th Annual World Methanol Conference, Berlin

  23. 23.

    Ortelli EE, Wambach J, Wokaun A (2001) Appl Catal A 216:227

  24. 24.

    Pop G, Ganea R, Ivanescu D, Boeru R, Ignatescu G, Birjega R (2004) Inventors; Casale Chemicals SA, US patent US 6,710,218

  25. 25.

    Palo DR, Dagle RA, Holladay JD (2007) Chem Rev 107:3992

  26. 26.

    Ma J, Sun N, Zhang X, Zhao N, Xiao F, Wei W, Sun Y (2009) Catal Today 148:221

  27. 27.

    Shen WJ, Ichihashi Y, Ando H, Matsumura Y, Okumura M, Haruta M (2001) Appl Catal A 217:231

  28. 28.

    Álvarez A, Bansode A, Urakawa A, Bavykina AV, Wezendonk TA, Makkee M, Gascon J, Kapteijn F (2017) Chem Rev 117:9804

  29. 29.

    Porosoff MD, Yan B, Chen JG (2016) Energy Environ Sci 9:62

  30. 30.

    Liu M, Yi Y, Wang L, Guo H, Bogaerts A (2019) Catalysts 9:275

  31. 31.

    Yang H, Zhang C, Gao P, Wang H, Li X, Zhong L, Wei W, Sun Y (2017) Catal Sci Technol 7:4580

  32. 32.

    Zachopoulos A, Heracleous E (2017) J CO2 Util 21:360

  33. 33.

    Mikkelsen M, Jørgensen M, Krebs FC (2010) Energy Environ Sci 3:43

  34. 34.

    Amenomiya Y (1987) Appl Catal 30:57

  35. 35.

    Dubois JL, Sayama K, Arakawa H (1992) Chem Lett 21:5

  36. 36.

    Stangeland K, Li H, Yu Z (2018) Ind Eng Chem Res 57:4081

  37. 37.

    Jia C, Gao J, Dai Y, Zhang J, Yang Y (2016) J Energy Chem 25:1027

  38. 38.

    Shen WJ, Jun KW, Choi HS, Lee KW (2000) Korean J Chem Eng 17:210

  39. 39.

    Graaf GH, Sijtsema PJ, Stamhuis EJ, Joosten GE (1986) Chem Eng Sci 41:2883

  40. 40.

    Bussche KV, Froment GF (1996) J Catal 161:1

  41. 41.

    Coteron A, Hayhurst AN (1994) Chem Eng Sci 49:209

  42. 42.

    Agny RM, Takoudis CG (1985) Ind Eng Chem Prod Res Dev 24:50

  43. 43.

    Weigel J, Koeppel RA, Baiker A, Wokaun A (1996) Langmuir 12:5319

  44. 44.

    Chiavassa DL, Collins SE, Bonivardi AL, Baltanás MA (2009) Chem Eng J 150:204

  45. 45.

    Lee S, Sardesai A (2005) Top Catal 32:197

  46. 46.

    Baltes C, Vukojević S, Schüth F (2008) J Catal 258:334

  47. 47.

    Inui T, Hara H, Takeguchi T, Kim JB (1997) Catal Today 36:25

  48. 48.

    Rahimpour MR, Fathikalajahi J, Jahanmiri A (1998) Can J Chem Eng 76:753

  49. 49.

    Wu JG, Saito M, Takeuchi M, Watanabe T (2001) Appl Catal A 218:235

  50. 50.

    Hartadi Y, Widmann D, Behm RJ (2016) J Catal 33:238

  51. 51.

    Xiao J, Frauenheim T (2013) J Phys Chem C 117:1804

  52. 52.

    Studt F, Sharafutdinov I, Abild-Pedersen F, Elkjær CF, Hummelshøj JS, Dahl S, Chorkendorff I, Nørskov JK (2014) Nat Chem 6:320

  53. 53.

    Sharafutdinov I, Elkjær CF, de Carvalho HW, Gardini D, Chiarello GL, Damsgaard CD, Wagner JB, Grunwaldt JD, Dahl S, Chorkendorff I (2014) J Catal 320:77

  54. 54.

    Kikuzono Y, Kagami S, Naito S, Onishi T, Tamaru K (1981) Faraday Discuss Chem Soc 72:135

  55. 55.

    Fujitani T, Saito M, Kanai Y, Watanabe T, Nakamura J, Uchijima T (1995) Appl Catal A 125:L199

  56. 56.

    Melian-Cabrera I, Granados ML, Terreros P, Fierro JLG (1998) Catal Today 45:251

  57. 57.

    Collins SE, Chiavassa DL, Bonivardi AL, Baltanás MA (2005) Catal Lett 103:83

  58. 58.

    Iwasa N, Suzuki H, Terashita M, Arai M, Takezawa N (2004) Catal Lett 96:75

  59. 59.

    Fan L, Fujimoto K (1993) Appl Catal A 106:L1

  60. 60.

    Malik AS, Zaman SF, Al-Zahrani AA, Daous MA, Driss H, Petrov LA (2018) Bulg Chem Commun 50:189

  61. 61.

    Xu J, Su X, Liu X, Pan X, Pei G, Huang Y, Wang X, Zhang T, Geng H (2016) Appl Catal A 514:51

  62. 62.

    Bahruji H, Bowker M, Hutchings G, Dimitratos N, Wells P, Gibson E, Jones W, Brookes C, Morgan D, Lalev G (2016) J Catal 343:133

  63. 63.

    Rodriguez JA (1994) J Phys Chem 98:5758

  64. 64.

    Bahruji H, Bowker M, Jones W, Hayward J, Esquius JR, Morgan DJ, Hutchings GJ (2017) Faraday Discuss 197:309

  65. 65.

    Liao F, Wu XP, Zheng J, Li MMJ, Kroner A, Zeng Z, Hong X, Yuan Y, Gong XQ, Tsang SCE (2017) Green Chem 19:270

  66. 66.

    Malik AS, Zaman SF, Al-Zahrani AA, Daous MA, Driss H, Petrov LA (2018) Appl Catal A 560:42

  67. 67.

    Ojelade OA, Zaman SF (2019) C R Acad Bull Sci 72:732. https://doi.org/10.7546/CRABS.2019.06.05

  68. 68.

    Ojelade OA, Zaman SF, Daous MA, Al-Zahrani AA, Malik AS, Driss H, Shterk G, Gascon J (2019) Appl Catal A 584:117185. https://doi.org/10.1016/j.apcata.2019.117185

  69. 69.

    Malik AS, Zaman SF, Al-Zahrani AA, Daous MA, Driss H, Petrov LA (2019) Catal Today. https://doi.org/10.1016/j.cattod.2019.05.040

  70. 70.

    Fan L, Fujimoto K (1994) J Catal 150:217

  71. 71.

    Díez-Ramírez J, Sánchez P, Rodríguez-Gómez A, Valverde JL, Dorado F (2016) Ind Eng Chem Res 55:3556

  72. 72.

    García-Trenco A, Regoutz A, White ER, Payne DJ, Shaffer MS, Williams CK (2018) Appl Catal B 220:9

  73. 73.

    Baiker A, Gasser D (1989) J Chem Soc Faraday Trans 1(85):999

  74. 74.

    Qin CD, Yu CC, Ng DH, Lim LC, Lai MO (1996) Matter Lett 26:17

  75. 75.

    Gao Q, Joyner RW (1999) Appl Surf Sci 375:144

  76. 76.

    Jiang X, Wang X, Nie X, Koizumi N, Guo X, Song C (2018) Catal Today 316:62

  77. 77.

    Jiang X, Nie X, Wang X, Wang H, Koizumi N, Chen Y, Guo X, Song C (2019) J Catal 369:21

  78. 78.

    Collins SE, Baltanás MA, Fierro JLG, Bonivardi AL (2002) J Catal 211:252

  79. 79.

    Fiordaliso EM, Sharafutdinov I, Carvalho HW, Grunwaldt JD, Hansen TW, Chorkendorff I, Wagner JB, Damsgaard CD (2015) ACS Catal 5:5827

  80. 80.

    Ponec V (1992) Surf Sci 272:111

  81. 81.

    de Leitenburg C, Trovarelli A, Kašpar J (1997) J Catal 166:98

  82. 82.

    Sharma S, Hilaire S, Vohs J, Gorte RJ, Jen HW (2000) J Catal 190:199

  83. 83.

    Behrens M, Zander S, Kurr P, Jacobsen N, Senker J, Koch G, Ressler T, Fischer RW, Schlögl R (2013) J Am Chem Soc 135:6061

  84. 84.

    Koizumi N, Jiang X, Kugai J, Song C (2012) Catal Today 194:16

  85. 85.

    Zheng B, Hua W, Yue Y, Gao Z (2005) J Catal 232:143

  86. 86.

    Areán CO, Bellan AL, Mentruit MP, Delgado MR, Palomino GT (2000) Microporous Mesoporous Mater 40:35

  87. 87.

    Stepanov SI, Nikolaev VI, Bougrov VE, Romanov AE (2016) Rev Adv Mater Sci 44:63

  88. 88.

    Yamaguchi T (1994) Catal Today 20:199

  89. 89.

    Matsumura Y, Shen WJ, Ichihashi Y, Okumura M (2001) J Catal 197:267

  90. 90.

    Naito S, Aida S, Tsunematsu T, Miyao T (1998) Chem Lett 27:941

  91. 91.

    Naito S, Aida S, Miyao T (2000) Stud Surf Sci Catal 130:701

  92. 92.

    Liang XL, Dong X, Lin GD, Zhang HB (2009) Appl Catal B 88:315

  93. 93.

    Fujitani T, Nakamura I (2002) Bull Chem Soc Jpn 75:1393

  94. 94.

    Ota A, Kunkes EL, Kasatkin I, Groppo E, Ferri D, Poceiro B, Yerga RMN, Behrens M (2012) J Catal 293:27

  95. 95.

    García-Trenco A, White ER, Regoutz A, Payne DJ, Shaffer MS, Williams CK (2017) ACS Catal 7:1186

  96. 96.

    Oyola-Rivera O, Baltanás MA, Cardona-Martínez N (2015) J CO2 Util 9:8

  97. 97.

    Li L, Zhang B, Kunkes E, Föttinger K, Armbrüster M, Su DS, Wei W, Schlögl R, Behrens M (2012) ChemCatChem 4:1764

  98. 98.

    Kovnir K, Armbrüster M, Teschner D, Venkov TV, Jentoft FC, Knop-Gericke A, Grin Y, Schlögl R (2007) Sci Technol Adv Mater 8:420

  99. 99.

    Bahruji H, Esquius JR, Bowker M, Hutchings G, Armstrong RD, Jones W (2018) Top Catal 61:144

  100. 100.

    Hu B, Yin Y, Liu G, Chen S, Hong X, Tsang SCE (2018) J Catal 359:17

  101. 101.

    Choi EJ, Lee YH, Lee DW, Moon DJ, Lee KY (2017) Mol Catal 434:146

  102. 102.

    Kugai J, Fox EB, Song C (2013) Appl Catal A 456:204

  103. 103.

    Trovarelli A (1996) Catal. Rev. 38:439

  104. 104.

    Fox EB, Velu S, Engelhard MH, Chin YH, Miller JT, Kropf J, Song C (2008) J Catal 260:358

  105. 105.

    Yin Y, Hu B, Li X, Zhou X, Hong X, Liu G (2018) Appl Catal B 234:143

  106. 106.

    Ehrlich D, Wohlrab S, Wambach J, Kuhlenbeck H, Freund HJ (1990) Vacuum 41:157

  107. 107.

    Rui N, Wang Z, Sun K, Ye J, Ge Q, Liu CJ (2017) Appl. Catal. B: Environ 218:488

  108. 108.

    Neumann M, Teschner D, Knop-Gericke A, Reschetilowski W, Armbrüster M (2016) J Catal 340:49

  109. 109.

    Tew MW, Miller JT, van Bokhoven JA (2009) J Phys Chem A 113:15140

  110. 110.

    Song YQ, Liu XR, Xiao LF, Wu W, Zhang JW, Song XM (2015) Catal Lett 145:1272

  111. 111.

    Gotti A, Prins R (1998) J Catal 175:302

  112. 112.

    Haller GL, Resasco DE (1989) Adv Catal 36:173

  113. 113.

    Tauster SJ, Fung SC, Garten RL (1978) J Am Chem Soc 100:70

  114. 114.

    Tauster SJ, Fung SC (1978) J Catal 55:29

  115. 115.

    Fan L, Fujimoto K (1997) J Catal 172:238

  116. 116.

    Zhou X, Qu J, Xu F, Hu J, Foord JS, Zeng Z, Hong X, Tsang SCE (2013) Chem Commun 49:1747

  117. 117.

    Conner WC Jr, Falconer JL (1995) Chem Rev 95:759

  118. 118.

    Qu J, Zhou X, Xu F, Gong XQ, Tsang SCE (2014) J Phy Chem 118:24452

  119. 119.

    Collins SE, Baltanas MA, Bonivardi AL (2004) J Catal 226:410

  120. 120.

    Wang W, Wang S, Ma X, Gong J (2011) Chem Soc Rev 40:3703

  121. 121.

    Solymosi F, Erdöhelyi A, Lancz M (1985) J Catal 95:567

  122. 122.

    Erdöhelyi A, Pásztor M, Solymosi F (1986) J Catal 98:166

  123. 123.

    Chiavassa DL, Barrandeguy J, Bonivardi AL, Baltanás MA (2008) Catal Today 133:780

  124. 124.

    Collins SE, Delgado JJ, Mira C, Calvino JJ, Bernal S, Chiavassa DL, Baltanás MA, Bonivardi AL (2012) J Catal 292:90

  125. 125.

    Schild C, Wokaun A, Baiker A (1990) J Mol Catal 63:223

  126. 126.

    Arunajatesan V, Subramaniam B, Hutchenson KW, Herkes F (2007) Chem Eng Sci 62:5062

  127. 127.

    Hadjiivanov KI, Vayssilov GN (2002) Adv Catal 47:307

  128. 128.

    Lei H, Hou Z, Xie J (2016) Fuel 164:191

  129. 129.

    Dong X, Li F, Zhao N, Xiao F, Wang J, Tan Y (2016) Appl Catal B 191:8

  130. 130.

    Bavykina A, Yarulina I, Gevers L, Hedhil M, Miao X, Ramirez A, Pustovarenko O, Dikhtiarenko A, Cadiau A, Ould-Chikh S, Gascon J (2018) ChemRxiv. https://doi.org/10.26434/chemrxiv.7346693.v1

  131. 131.

    Kim CH, Lee JS, Trimm DL (2004) Stud Surf Sci Catal 153:61

  132. 132.

    Jiang X, Koizumi N, Guo X, Song C (2015) Appl Catal B 170:173

  133. 133.

    Díez-Ramírez J, Díaz JA, Sánchez P, Dorado F (2017) J CO2 Util 22:71

  134. 134.

    Cabilla GC, Bonivardi AL, Baltanás MA (2001) J Catal 201:213

Download references

Acknowledgements

Authors appreciate the support from the Chemical and Materials Engineering Department, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia.

Author information

Correspondence to Sharif F. Zaman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ojelade, O.A., Zaman, S.F. A Review on Pd Based Catalysts for CO2 Hydrogenation to Methanol: In-Depth Activity and DRIFTS Mechanistic Study. Catal Surv Asia 24, 11–37 (2020). https://doi.org/10.1007/s10563-019-09287-z

Download citation

Keywords

  • Methanol
  • CO2 hydrogenation
  • Pd catalysts
  • Supports/promoters
  • FTIR
  • DRIFTS