Advertisement

Exploring the Influence of Pd Species Valence State and Chemisorbed Oxygen Concentration on the Catalytic Oxidation Performance of Toluene

  • Weiliang Han
  • Fang Dong
  • Haijun Zhao
  • Guodong Zhang
  • Zhicheng TangEmail author
Article
  • 16 Downloads

Abstract

The valence state of Pd and chemisorbed oxygen were important factors for catalytic oxidation of toluene. The valence of Pd and chemisorbed oxygen could be adjusted by preparation method. In this paper, a series of Pd/Ce-Zr-Ox (PdCZ-Ox) catalysts were prepared by impregnation (PdCZ-Ox-IM), co-precipitation (PdCZ-Ox-CP), sol–gel (PdCZ-Ox-SG) and hydrothermal (PdCZ-Ox-HT) method, respectively, which could cause the structure alteration of PdCZ-Ox catalysts. These catalysts exhibited a great diverse in catalytic oxidation of toluene reaction due to the structure alteration of PdCZ-Ox catalysts. Through systematic analysis, PdCZ-Ox-CP exhibited higher catalytic performance of toluene oxidation than the other three PdCZ-Ox catalysts, which was attributed to the valence of Pd and the concentration of surface chemisorbed oxygen. The stability of PdCZ-Ox-CP was explored by three consecutives runs, thermal stability and moisture resistance tests. The PdCZ-Ox-CP possessed the good repeatability at three consecutives runs, superior moisture resistance, and the excellent stability.

Keywords

Preparation method Element valence Chemisorbed oxygen Catalytic oxidation of toluene 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21707145, 51808529), Natural Science Foundation of Gansu Province (18JR3RA383, 17JR5RA317), Key Science and Technology Program of Lanzhou City (2017-4-111), and West Light Foundation of The Chinese Academy of Sciences.

References

  1. 1.
    Li L, Zhang F, Zhong Z, Zhu M, Jiang C, Hu J, Xing W (2017) Novel synthesis of a high-performance Pt/ZnO/SiC filter for the oxidation of toluene. Ind Eng Chem Res 56:13857–13865CrossRefGoogle Scholar
  2. 2.
    Tan W, Deng J, Xie S, Yang H, Jiang Y, Guo G, Dai H (2015) Ce0.6Zr0.3Y0.1O2 nanorod supported gold and palladium alloy nanoparticles: high-performance catalysts for toluene oxidation. Nanoscale 7:8510–8523CrossRefGoogle Scholar
  3. 3.
    Wang Y, Zhang L, Guo L (2018) Enhanced toluene combustion over highly homogeneous iron manganese oxide nanocatalysts. ACS Appl Nano Mater 1:1066–1075CrossRefGoogle Scholar
  4. 4.
    Jia L, Ma J, Shi Q, Long C (2017) Prediction of adsorption equilibrium of VOCs onto hyper-cross-linked polymeric resin at environmentally relevant temperatures and concentrations using inverse gas chromatography. Environ Sci Technol 51:522–530CrossRefGoogle Scholar
  5. 5.
    Boutry DT, Fiorentino B, Bartolomei V, Soulas R, Sicardy O, Benayad A, Damlencourt JF, Donat BP, Lombard C, Gandolfo A, Wortham H, Brochard G, Audemard A, Porcar L, Gebel G, Gligorovski S (2017) Characterization of photocatalytic paints: a relationship between the photocatalytic properties-release of nanoparticles and volatile organic compounds. Environ Sci 4:1998–2009Google Scholar
  6. 6.
    Peng R, Li S, Sun X, Ren Q, Chen L, Fu M, Wu J, Ye D (2018) Size effect of Pt nanoparticles on the catalytic oxidation of toluene over Pt/CeO2 catalysts. Appl Catal B 220:462–470CrossRefGoogle Scholar
  7. 7.
    Matejová L, Topka P, Kaluza L, Pitkäaho S, Ojala S, Gaálová J, Keiski RL (2013) Total oxidation of dichloromethane and ethanol over ceria-zirconia mixed oxide supported platinum and gold catalysts. Appl Catal B 142–143:54–64CrossRefGoogle Scholar
  8. 8.
    Li M, Wu X, Wan J, Liu S, Ran R, Weng D (2015) Pd-Ce0.33Zr0.67O2-Al2O3 catalyst for propane oxidation: interactions between the precious metal and support under the hydrothermal ageing. Catal Today 242:322–328CrossRefGoogle Scholar
  9. 9.
    Zhao S, Li K, Jiang S, Li J (2016) Pd-Co based spinel oxides derived from Pd nanoparticles immobilized on layered double hydroxides for toluene combustion. Appl Catal B 181:236–248CrossRefGoogle Scholar
  10. 10.
    Liu X, Zhang Q, Ning P, Tang T, Hu J, Su W (2018) One-pot synthesis of mesoporous Al2O3-supported Pt-Pd catalysts for toluene combustion. Catal Commun 115:26–30CrossRefGoogle Scholar
  11. 11.
    Chlala D, Labaki M, Giraudon JM, Gardoll O, Denicourt-Nowicki A, Roucoux A, Lamonier JF (2016) Toluene total oxidation over Pd and Au nanoparticles supported on hydroxyapatite. C R Chim 19:525–537CrossRefGoogle Scholar
  12. 12.
    Yue L, He C, Zhang X, Li P, Wang Z, Wang H, Hao Z (2013) Catalytic behavior and reaction routes of MEK oxidation over Pd/ZSM-5 and Pd-Ce/ZSM-5 catalysts. J Hazard Mater 244–245:613–620CrossRefGoogle Scholar
  13. 13.
    Huang H, Xu Y, Feng Q, Leung DYC (2015) Low temperature catalytic oxidation of volatile organic compounds: a review. Catal Sci Technol 5:2649–2669CrossRefGoogle Scholar
  14. 14.
    Zhang J, Rao C, Peng H, Peng C, Zhang L, Xu X, Liu W, Wang Z, Zhang N, Wang X (2018) Enhanced toluene combustion performance over Pt loaded hierarchical porous MOR zeolite. Chem Eng J 334:10–18CrossRefGoogle Scholar
  15. 15.
    Zhang G, Han W, Dong F, Zong L, Lu G, Tang Z (2016) One pot synthesis of a highly efficient mesoporous ceria-titanium catalyst for selective catalytic reduction of NO. RSC Adv 6:76556–76567CrossRefGoogle Scholar
  16. 16.
    Shen D, Dai Y, Han J, Gan L, Liu J, Long M (2018) A nanocellulose template strategy for the controllable synthesis of tungsten-containing mesoporous silica for ultra-deep oxidative desulfurization. Chem Eng J 332:563–571CrossRefGoogle Scholar
  17. 17.
    Han W, Zhang G, Zhao K, Lu G, Tang Z (2015) Surface texture and physicochemical characterization of mesoporous carbon-wrapped Pd-Fe catalysts for low-temperature CO catalytic oxidation. Phys Chem Chem Phys 17:29027–29035CrossRefGoogle Scholar
  18. 18.
    Lee SR, Cho JM, Son M, Park MJ, Kim WY, Kim SY, Bae JW (2018) Selective hydrodechlorination of trichloromethane to dichloromethane over bimetallic Pt-Pd/KIT-6: catalytic activity and reaction kinetics. Chem Eng J 331:556–569CrossRefGoogle Scholar
  19. 19.
    Ryou Y, Lee J, Lee H, Choung JW, Yoo S, Kim DH (2015) Roles of ZrO2 in SO2-poisoned Pd/(Ce-Zr)O2 catalysts for CO oxidation. Catal Today 258:518–524CrossRefGoogle Scholar
  20. 20.
    Juez AI, Arias AM, García MF (2004) Metal-promoter interface in Pd/(Ce, Zr)Ox/Al2O3 catalysts: effect of thermal aging. J Catal 221:148–161CrossRefGoogle Scholar
  21. 21.
    Liu Z, Xu Y, Cheng J, Wang W, Wang B, Li Z, Ma X (2018) Comparative study on cubic and tetragonal CexZr1-xO2 supported MoO3-catalysts for sulfur-resistant methanation. Appl Surf Sci 433:730–738CrossRefGoogle Scholar
  22. 22.
    Juez AI, Arias AM, Hungrı́a AB, Anderson JA, Conesa JC, Soria J, Garcı́a MF (2004) Influence of the nature of the Ce-promoter on the behavior of Pd and Pd–Cr TWC systems. Appl Catal A 259:207–220CrossRefGoogle Scholar
  23. 23.
    Sun S, Mao D, Yu J, Yang Z, Lua G, Ma Z (2015) Low-temperature CO oxidation on CuO/CeO2 catalysts: the significant effect of copper precursor and calcination temperature. Catal Sci Technol 5:3166–3181CrossRefGoogle Scholar
  24. 24.
    Gao Q, Xia G, Yu X (2017) Confined NaAlH4 nanoparticles inside CeO2 hollow nanotubes towards enhanced hydrogen storage. Nanoscale 9:14612–14619CrossRefGoogle Scholar
  25. 25.
    Monai M, Montini T, Melchionna M, Duchoň T, Kúš P, Chen C, Tsud N, Nasi L, Princee KC, Veltruská K, Matolín V, Khader MM, Gorte RJ, Fornasiero P (2017) The effect of sulfur dioxide on the activity of hierarchical Pd-based catalysts in methane combustion. Appl Catal B 202:72–83CrossRefGoogle Scholar
  26. 26.
    Shen M, Lin F, Wei G, Wang J, Zhu S (2015) Improved sulfur-resistant ability on CO oxidation of Pd/Ce0.75Zr0.25O2 over Pd/CeO2-TiO2 and Pd/CeO2. J Rare Earth 33:56–61CrossRefGoogle Scholar
  27. 27.
    Wang Y, Zhang C, Liu F, He H (2013) Well-dispersed palladium supported on ordered mesoporous Co3O4 for catalytic oxidation of o-xylene. Appl Catal B 142–143:72–79CrossRefGoogle Scholar
  28. 28.
    Wang Y, Zhang C, Yu Y, Yue R, He H (2015) Ordered mesoporous and bulk Co3O4 supported Pd catalysts for catalytic oxidation of o-xylene. Catal Today 242:294–299CrossRefGoogle Scholar
  29. 29.
    Wang N, Li S, Zong Y, Yao Q (2017) Sintering inhibition of flame-made Pd/CeO2 nanocatalyst for low-temperature methane combustion. J Aerosol Sci 105:64–72CrossRefGoogle Scholar
  30. 30.
    Hilaire S, Wang X, Luo T, Gorte RJ, Wagner J (2001) A comparative study of water-gas-shift reaction over ceria supported metallic catalysts. Appl Catal A 215:271–278CrossRefGoogle Scholar
  31. 31.
    Zhang G, Han W, Zhao H, Zong L, Tang Z (2018) Solvothermal synthesis of well-designed ceria-tin-titanium catalysts with enhanced catalytic performance for wide temperature NH3-SCR reaction. Appl Catal B 226:117–126CrossRefGoogle Scholar
  32. 32.
    Wang H, Wu L, Jia A, Li X, Shi Z, Duan M, Wang Y (2018) Ni nanoparticles encapsulated in the channel of titanate nanotubes: efficient noble-metal-free catalysts for selective hydrogen generation from hydrous hydrazine. Chem Eng J 332:637–646CrossRefGoogle Scholar
  33. 33.
    Ma L, Seo CY, Chen X, Sun K, Schwank JW (2018) Indium-doped Co3O4 nanorods for catalytic oxidation of CO and C3H6 towards diesel exhaust. Appl Catal B 222:44–58CrossRefGoogle Scholar
  34. 34.
    Escribanoa VS, Martínez CH, Baz AC, Amores JMG, López EF (2011) Methanol conversion over a Pd5Cu/Al2O3-CeO2 catalyst: an FT-IR study and reaction mechanism. Spectrochim Acta A 83:236–241CrossRefGoogle Scholar
  35. 35.
    Bi YS, Dang GY, Zhao XH, Meng XF, Lu HJ, Jin JT (2012) Preparation, characterization and catalytic properties of Pd-Fe-zeolite and Pd-Ce-zeolite composite catalysts. J Hazard Mater 229–230:245–250CrossRefGoogle Scholar
  36. 36.
    Kang R, Wei X, Bin F, Wang Z, Hao Q, Dou B (2018) Reaction mechanism and kinetics of CO oxidation over a CuO/Ce0.75Zr0.25O2-δ catalyst. Appl Catal A 565:46–58CrossRefGoogle Scholar
  37. 37.
    Sun H, Liu Z, Chen S, Quan X (2015) The role of lattice oxygen on the activity and selectivity of the OMS-2 catalyst for the total oxidation of toluene. Chem Eng J 270:58–65CrossRefGoogle Scholar
  38. 38.
    Feng X, Guo J, Wen X, Xu M, Chu Y, Yuan S (2018) Enhancing performance of Co/CeO2 catalyst by Sr doping for catalytic combustion of toluene. Appl Surf Sci 445:145–153CrossRefGoogle Scholar
  39. 39.
    Wang B, Chi C, Xu M, Wang C, Meng D (2017) Plasma-catalytic removal of toluene over CeO2-MnOx catalysts in an atmosphere dielectric barrier discharge. Chem Eng J 322:679–692CrossRefGoogle Scholar
  40. 40.
    Han W, Zhao H, Dong F, Tang Z (2018) Morphology-controlled synthesis of 3D, mesoporous, rosette-like CeCoOx catalysts by pyrolysis of Ce[Co(CN)6] and application for the catalytic combustion of toluene. Nanoscale 10:21307–21319CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Weiliang Han
    • 1
  • Fang Dong
    • 1
  • Haijun Zhao
    • 1
  • Guodong Zhang
    • 1
  • Zhicheng Tang
    • 1
    Email author
  1. 1.State Key Laboratory for Oxo Synthesis and Selective Oxidation, and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhouChina

Personalised recommendations