Tailoring the Size and Shape of Colloidal Noble Metal Nanocrystals as a Valuable Tool in Catalysis

  • Miriam Navlani-García
  • David Salinas-Torres
  • Kohsuke Mori
  • Yasutaka Kuwahara
  • Hiromi YamashitaEmail author


The pivotal role of size and morphology-controlled nanocrystals in catalysis is a recognized fact nowadays. Among the strategies developed to adjust such features, colloidal synthetic approaches have been proven to be a valuable alternative through which noble metal nanocrystals with tailored sizes and morphologies can be formed upon proper selection of the experimental conditions. This review summarizes some of the main aspects to be considered in the synthesis of colloidal noble metal and includes representative examples of their catalytic applications by spotlighting the experimental conditions used in the synthesis and how the size and/or shape of the nanocrystals influence in the final catalytic performance.


Noble metal nanocrystals Colloidal synthesis Polyol method Morphology-controlled nanocrystals Size effect Shape effect 



This work was supported by JST, PRESTO (JPMJPR1544) and by Grants-in-Aid for Scientific Research (Grant Nos. 26220911, 25289289, and 26630409, 26620194) from the Japan Society for the Promotion of Science (JSPS) and MEXT and “Elemental Strategy Initiative to Form Core Research Center”. MNG (A17F173810) and DST (J171015004) thank JSPS for the International Postdoctoral Research Fellowships.

Compliance with Ethical Standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. 1.
    Sattler K (1986) Clusters of atoms. Phys Scr 1986:93–99CrossRefGoogle Scholar
  2. 2.
    Daniel M, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346CrossRefPubMedGoogle Scholar
  3. 3.
    Goesmann H, Feldmann C (2010) Nanoparticulate functional materials. Angew Chem Int Ed 49:1362–1395CrossRefGoogle Scholar
  4. 4.
    Faraday M (1857) The Bakerian lecture: experimental relations of gold (and other metals) to light. Philos Trans R Soc London 147:145–181CrossRefGoogle Scholar
  5. 5.
    Lohse SE, Murphy CJ (2012) Applications of colloidal inorganic nanoparticles: from medicine to energy. J Am Chem Soc 134:15607–15620CrossRefPubMedGoogle Scholar
  6. 6.
    Nørskov JK, Bligaard T, Hvolbæk B et al (2008) The nature of the active site in heterogeneous metal catalysis. Chem Soc Rev 37:2163–2171CrossRefPubMedGoogle Scholar
  7. 7.
    Xie W, Schlücker S (2018) Surface-enhanced Raman spectroscopic detection of molecular chemo- and plasmo-catalysis on noble metal nanoparticles. Chem Commun 54:2326–2336CrossRefGoogle Scholar
  8. 8.
    Somorjai GA, Frei H, Park JY (2009) Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques. J Am Chem Soc 131:16589–16605CrossRefPubMedGoogle Scholar
  9. 9.
    Gubin SP, Koksharov YA, Khomutov GB, Yurkov GY (2005) Magnetic nanoparticles: preparation, structure and properties. Russ Chem Rev 74:489–520CrossRefGoogle Scholar
  10. 10.
    Gaffet E, Tachikart M, El Kedim O, Rahouadj R (1996) Nanostructural materials formation by mechanical alloying: morphologic analysis based on transmission and scanning electron microscopic observations. Mater Charact 36:185–190CrossRefGoogle Scholar
  11. 11.
    Mafuné F, Kohno JY, Takeda Y, Kondow T (2002) Growth of gold clusters into nanoparticles in a solution following laser-induced fragmentation. J Phys Chem B 106:8555–8561CrossRefGoogle Scholar
  12. 12.
    Zhang J, Chaker M, Ma D (2017) Pulsed laser ablation based synthesis of colloidal metal nanoparticles for catalytic applications. J Colloid Interface Sci 489:138–149CrossRefPubMedGoogle Scholar
  13. 13.
    Abedini A, Bakar AAA, Larki F et al (2016) Recent advances in shape-controlled synthesis of noble metal nanoparticles by radiolysis route. Nanoscale Res Lett 11(1):287CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    An K, Somorjai GA (2012) Size and shape control of metal nanoparticles for reaction selectivity in catalysis. ChemCatChem 4:1512–1524CrossRefGoogle Scholar
  15. 15.
    Wu Z, Yang S, Wu W (2016) Shape control of inorganic nanoparticles from solution. Nanoscale 8:1237–1259CrossRefPubMedGoogle Scholar
  16. 16.
    Xia Y, Xia X, Peng HC (2015) Shape-controlled synthesis of colloidal metal nanocrystals: thermodynamic versus kinetic products. J Am Chem Soc 137:7947–7966CrossRefPubMedGoogle Scholar
  17. 17.
    Fan F, Liu D, Wu Y et al (2008) Epitaxial growth of heterogeneous metal nanocrystals: from gold nano-octahedra to palladium and silver nanocubes. J Am Chem Soc 130:6949–6951CrossRefPubMedGoogle Scholar
  18. 18.
    Lamer VK, Dinegar RH (1950) Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc 72:4847–4854CrossRefGoogle Scholar
  19. 19.
    Wang Y, Il Choi S, Zhao X et al (2014) Polyol synthesis of ultrathin Pd nanowires via attachment-based growth and their enhanced activity towards formic acid oxidation. Adv Funct Mater 24:131–139CrossRefGoogle Scholar
  20. 20.
    Hansen TW, Delariva AT, Challa SR, Datye AK (2013) Sintering of catalytic nanoparticles: particle migration or Ostwald ripening? Acc Chem Res 46:1720–1730CrossRefPubMedGoogle Scholar
  21. 21.
    Penn RL (1998) Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science (80-) 281:969–971CrossRefGoogle Scholar
  22. 22.
    Roucoux A, Schulz J, Patin H (2002) Reduced transition metal colloids: a novel family of reusable catalysts? Chem Rev 102:3757–3778CrossRefPubMedGoogle Scholar
  23. 23.
    You H, Yang S, Ding B, Yang H (2013) Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. Chem Soc Rev 42:2880–2904CrossRefPubMedGoogle Scholar
  24. 24.
    Rodrigues TS, Zhao M, Yang TH et al (2018) Synthesis of colloidal metal nanocrystals: a comprehensive review on the reductants. Chem - A Eur J 24:16944–16963CrossRefGoogle Scholar
  25. 25.
    Tao AR, Habas S, Yang P (2008) Shape control of colloidal metal nanocrystals. Small 4:310–325CrossRefGoogle Scholar
  26. 26.
    Fievet F, Lagier J, Blin B et al (2002) Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles. Solid State Ionics 32–33:198–205Google Scholar
  27. 27.
    Navlani-García M, Martis M, Lozano-Castelló D et al (2015) Investigation of Pd nanoparticles supported on zeolites for hydrogen production from formic acid dehydrogenation. Catal Sci Technol 5:364–371CrossRefGoogle Scholar
  28. 28.
    Navlani-García M, Mori K, Nozaki A et al (2016) Screening of carbon-supported PdAg nanoparticles in the hydrogen production from formic acid. Ind Eng Chem Res 55:7612–7620CrossRefGoogle Scholar
  29. 29.
    Navlani-García M, Miguel-García I, Berenguer-Murcia Á et al (2016) Pd/zeolite-based catalysts for the preferential CO oxidation reaction: ion-exchange, Si/Al and Structure effect. Catal Sci Technol 6:2623–2632CrossRefGoogle Scholar
  30. 30.
    Quinson J, Inaba M, Neumann S et al (2018) Investigating particle size effects in catalysis by applying a size-controlled and surfactant-free synthesis of colloidal nanoparticles in alkaline ethylene glycol: case study of the oxygen reduction reaction on Pt. ACS Catal 8:6627–6635CrossRefGoogle Scholar
  31. 31.
    Wang Y, Zheng Y, Huang CZ, Xia Y (2013) Synthesis of Ag nanocubes 18-32 nm in edge length: the effects of polyol on reduction kinetics, size control, and reproducibility. J Am Chem Soc 135:1941–1951CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Bock C, Paquet C, Couillard M et al (2004) Size-selected synthesis of PtRu nano-catalysts: reaction and size control mechanism. J Am Chem Soc 126(25):8028–8037CrossRefPubMedGoogle Scholar
  33. 33.
    Schrader I, Warneke J, Neumann S et al (2015) Surface chemistry of “unprotected” nanoparticles: a spectroscopic investigation on colloidal particles. J Phys Chem C 119:17655–17661CrossRefGoogle Scholar
  34. 34.
    Bonet F, Guéry C, Guyomard D et al (1999) Electrochemical reduction of noble metal compounds in ethylene glycol. Int J Inorg Mater 1:47–51CrossRefGoogle Scholar
  35. 35.
    Wu C, Mosher BP, Lyons K, Zeng T (2010) Reducing ability and mechanism for polyvinylpyrrolidone (PVP) in silver nanoparticles synthesis. J Nanosci Nanotechnol 10:2342–2347CrossRefPubMedGoogle Scholar
  36. 36.
    Huang H, Wang Y, Ruditskiy A et al (2014) Polyol syntheses of palladium decahedra and icosahedra as pure samples by maneuvering the reaction kinetics with additives. ACS Nano 8:7041–7050CrossRefPubMedGoogle Scholar
  37. 37.
    Niu Z, Li Y (2014) Removal and utilization of capping agents in nanocatalysis. Chem Mater 26:72–83CrossRefGoogle Scholar
  38. 38.
    Mitzi DB, Feild CA, Harrison WTA, Guloy AM (1994) Direct measurement of colloidal forces using an atomic force microscope. Nature 367:532–538CrossRefGoogle Scholar
  39. 39.
    Jia C-J, Schüth F (2011) Colloidal metal nanoparticles as a component of designed catalyst. Phys Chem Chem Phys 13:2457–2487CrossRefPubMedGoogle Scholar
  40. 40.
    Saldías C, Bonardd S, Quezada C et al (2017) The role of polymers in the synthesis of noble metal nanoparticles: a review. J Nanosci Nanotechnol 17:87–114CrossRefPubMedGoogle Scholar
  41. 41.
    Hirai H, Yakura N (2001) Protecting polymers in suspension of metal nanoparticles. Polym Adv Technol 12:724–733CrossRefGoogle Scholar
  42. 42.
    García-Aguilar J, Navlani-García M, Berenguer-Murcia Á et al (2016) Evolution of the PVP-Pd surface interaction in nanoparticles through the case study of formic acid decomposition. Langmuir 32:12110–12118CrossRefPubMedGoogle Scholar
  43. 43.
    Miguel-García I, Navlani-García M, García-Aguilar J et al (2015) Capillary microreactors based on hierarchical SiO2 monoliths incorporating noble metal nanoparticles for the preferential oxidation of CO. Chem Eng J 275:71–78CrossRefGoogle Scholar
  44. 44.
    Domínguez-Domínguez S, Berenguer-Murcia A, Pradhan BK et al (2008) Semihydrogenation of phenylacetylene catalyzed by palladium nanoparticles supported on carbon materials. J Phys Chem C 112:3827–3834CrossRefGoogle Scholar
  45. 45.
    Krier JM, Komvopoulos K, Somorjai GA (2016) Cyclohexene and 1,4-cyclohexadiene hydrogenation occur through mutually exclusive intermediate pathways on platinum nanoparticles. J Phys Chem C 120:8246–8250CrossRefGoogle Scholar
  46. 46.
    Kweskin SJ, Rioux RM, Song H et al (2012) High-pressure adsorption of ethylene on cubic Pt nanoparticles and Pt(100) single crystals probed by in situ sum frequency generation vibrational spectroscopy. ACS Catal 2:2377–2386CrossRefGoogle Scholar
  47. 47.
    Giovanetti LJ, Ramallo-Lõpez JM, Foxe M et al (2012) Shape changes of Pt nanoparticles induced by deposition on mesoporous silica. Small 8:468–473CrossRefPubMedGoogle Scholar
  48. 48.
    Ruiz-García C, Heras F, Calvo L et al (2018) Platinum and N-doped carbon nanostructures as catalysts in hydrodechlorination reactions. Appl Catal B Environ 238:609–617CrossRefGoogle Scholar
  49. 49.
    Miguel-García I, Berenguer-Murcia Á, Cazorla-Amorós D (2010) Preferential oxidation of CO catalyzed by supported polymer-protected palladium-based nanoparticles. Appl Catal B Environ 98:161–170CrossRefGoogle Scholar
  50. 50.
    Collins G, Schmidt M, McGlacken GP et al (2014) Stability, oxidation, and shape evolution of PVP-capped Pd nanocrystals. J Phys Chem C 118:6522–6530CrossRefGoogle Scholar
  51. 51.
    Borodko Y, Habas SE, Koebel M et al (2006) Probing the interaction of poly(vinylpyrrolidone) with platinum nanocrystals by UV—Raman and FTIR. J Phys Chem B 110:23052–23059CrossRefPubMedGoogle Scholar
  52. 52.
    Borodko Y, Humphrey SM, Tilley TD et al (2007) Charge-transfer interaction of poly(vinylpyrrolidone) with platinum and rhodium nanoparticles. J Phys Chem C 111:6288–6295CrossRefGoogle Scholar
  53. 53.
    Tsunoyama H, Ichikuni N, Sakurai H, Tsukuda T (2009) Effect of electronic structures of au clusters stabilized by poly(N-vinyl-2-pyrrolidone) on aerobic oxidation catalysis. J Am Chem Soc 131:7086–7093CrossRefPubMedGoogle Scholar
  54. 54.
    Evangelisti C, Panziera N, D’Alessio A et al (2010) New monodispersed palladium nanoparticles stabilized by poly-(N-vinyl-2-pyrrolidone): preparation, structural study and catalytic properties. J Catal 272:246–252CrossRefGoogle Scholar
  55. 55.
    Evangelisti C, Panziera N, Pertici P et al (2009) Palladium nanoparticles supported on polyvinylpyridine: catalytic activity in Heck-type reactions and XPS structural studies. J Catal 262:287–293CrossRefGoogle Scholar
  56. 56.
    Qiu L, Liu F, Zhao L et al (2006) Evidence of a unique electron donor—acceptor property for platinum nanoparticles as studied by XPS. Langmuir 22:4480–4482CrossRefPubMedGoogle Scholar
  57. 57.
    Xian J, Hua Q, Jiang Z et al (2012) Size-dependent interaction of the poly(N-vinyl-2-pyrrolidone) capping ligand with Pd nanocrystals. Langmuir 28:6736–6741CrossRefPubMedGoogle Scholar
  58. 58.
    Kuwahara Y, Ando T, Kango H, Yamashita H (2017) Palladium nanoparticles encapsulated in hollow titanosilicate spheres as an ideal nanoreactor for one-pot oxidation. Chem—A Eur J 23:380–389CrossRefGoogle Scholar
  59. 59.
    Li Y, Zhang XL, Qiu R et al (2007) Chemical synthesis and silica encapsulation of NiPt nanoparticles. J Phys Chem C 111:10747–10750CrossRefGoogle Scholar
  60. 60.
    Chung S-H, Eom H-J, Kim M-S et al (2013) Highly dispersed ruthenium nanoparticle-embedded mesoporous silica as a catalyst for the production of < I>γ </I > -butyrolactone from succinic anhydride. J Nanosci Nanotechnol 13:7701–7706CrossRefPubMedGoogle Scholar
  61. 61.
    Galeandro-Diamant T, Sayah R, Zanota ML et al (2017) Pt nanoparticles immobilized in mesostructured silica: a non-leaching catalyst for 1-octene hydrosilylation. Chem Commun 53:2962–2965CrossRefGoogle Scholar
  62. 62.
    Zhao J, Liu H, Ye S et al (2013) Half-encapsulated Au nanoparticles by nano iron oxide: promoted performance of the aerobic oxidation of 1-phenylethanol. Nanoscale 5:9546–9552CrossRefPubMedGoogle Scholar
  63. 63.
    Martins J, Batail N, Silva S et al (2015) Improving the catalytic performances of metal nanoparticles by combining shape control and encapsulation. Appl Catal A Gen 504:504–508CrossRefGoogle Scholar
  64. 64.
    Guo X, Li L, Zhang X, Chen J (2015) Platinum nanoparticles encapsulated in nitrogen-doped mesoporous carbons as methanol-tolerant oxygen reduction electrocatalysts. ChemElectroChem 2:404–411CrossRefGoogle Scholar
  65. 65.
    Wei F, Cao C, Sun Y et al (2015) Highly active and stable palladium nanoparticles encapsulated in a mesoporous silica yolk-shell nanoreactor for Suzuki-Miyaura reactions. ChemCatChem 7:2475–2479CrossRefGoogle Scholar
  66. 66.
    Cobley CM, Chen J, Cho EC et al (2011) Gold nanostructures: a class of multifunctional materials for biomedical applications. Chem Soc Rev 40:44–56CrossRefPubMedGoogle Scholar
  67. 67.
    Li ZY (2018) Mesoscopic and microscopic strategies for engineering plasmon-enhanced raman scattering. Adv Opt Mater 6:1–37Google Scholar
  68. 68.
    Rodal-Cedeira S, Montes-García V, Polavarapu L et al (2016) Plasmonic Au@Pd nanorods with boosted refractive index susceptibility and SERS efficiency: a multifunctional platform for hydrogen sensing and monitoring of catalytic reactions. Chem Mater 28:9169–9180CrossRefGoogle Scholar
  69. 69.
    Zhang Z, Wang H, Chen Z et al (2018) Plasmonic colorimetric sensors based on etching and growth of noble metal nanoparticles: strategies and applications. Biosens Bioelectron 114:52–65CrossRefPubMedGoogle Scholar
  70. 70.
    Xu Y, Chen L, Wang X et al (2015) Recent advances in noble metal based composite nanocatalysts: colloidal synthesis, properties, and catalytic applications. Nanoscale 7:10559–10583CrossRefPubMedGoogle Scholar
  71. 71.
    Corma A, Garcia H (2008) Supported gold nanoparticles as catalysts for organic reactions. Chem Soc Rev 37:2096–2126CrossRefPubMedGoogle Scholar
  72. 72.
    Sarina S, Waclawik ER, Zhu H (2013) Photocatalysis on supported gold and silver nanoparticles under ultraviolet and visible light irradiation. Green Chem 15:1814–1833CrossRefGoogle Scholar
  73. 73.
    Freund HJ, Nilius N, Risse T, Schauermann S (2014) A fresh look at an old nano-technology: catalysis. Phys Chem Chem Phys 16:8148–8167CrossRefPubMedGoogle Scholar
  74. 74.
    Freyschlag CG, Madix RJ (2011) Precious metal magic: catalytic wizardry. Mater Today 14:134–142CrossRefGoogle Scholar
  75. 75.
    Ahmadi TS, Wang ZL, Green TC et al (1996) Shape-controlled synthesis of colloidal platinum nanoparticles. Science (80-) 272:1924–1925CrossRefGoogle Scholar
  76. 76.
    Ahmadi TS, Wang ZL, Henglein A, El-Sayed MA (1996) “Cubic” colloidal platinum nanoparticles. Chem Mater 8:1161–1163CrossRefGoogle Scholar
  77. 77.
    Tsung C-K, Kuhn JN, Huang W et al (2009) Sub-10 nm platinum nanocrystals with size and shape control: catalytic study for ethylene and pyrrole hydrogenation. Abstr Pap Am Chem Soc 237:819Google Scholar
  78. 78.
    Lee H, Habas SE, Kweskin S et al (2006) Morphological control of catalytically active platinum nanocrystals. Angew Chem—Int Ed 45:7824–7828CrossRefGoogle Scholar
  79. 79.
    Vidal-Iglesias FJ, Solla-Gullón J, Rodríguez P et al (2004) Shape-dependent electrocatalysis: ammonia oxidation on platinum nanoparticles with preferential (100) surfaces. Electrochem Commun 6:1080–1084CrossRefGoogle Scholar
  80. 80.
    Hernández J, Solla-Gullón J, Herrero E et al (2005) Characterization of the surface structure of gold nanoparticles and nanorods using structure sensitive reactions. J Phys Chem B 109:12651–12654CrossRefPubMedGoogle Scholar
  81. 81.
    Farias MJS, Busó-Rogero C, Vidal-Iglesias FJ et al (2017) Mobility and oxidation of adsorbed CO on shape-controlled Pt nanoparticles in acidic medium. Langmuir 33:865–871CrossRefPubMedGoogle Scholar
  82. 82.
    Arán-Ais RM, Solla-Gullón J, Gocyla M et al (2016) The effect of interfacial pH on the surface atomic elemental distribution and on the catalytic reactivity of shape-selected bimetallic nanoparticles towards oxygen reduction. Nano Energy 27:390–401CrossRefGoogle Scholar
  83. 83.
    Qian J, Shen M, Zhou S et al (2018) Synthesis of Pt nanocrystals with different shapes using the same protocol to optimize their catalytic activity toward oxygen reduction. Mater Today 21:834–844CrossRefGoogle Scholar
  84. 84.
    Huo D, Ding H, Zhou S et al (2018) Facile synthesis of gold trisoctahedral nanocrystals with controllable sizes and dihedral angles. Nanoscale 10:11034–11042CrossRefPubMedGoogle Scholar
  85. 85.
    Gao W, Hou Y, Hood ZD et al (2018) Direct in situ observation and analysis of the formation of palladium nanocrystals with high-index facets. Nano Lett 18:7004–7013CrossRefPubMedGoogle Scholar
  86. 86.
    Zhang H, Jin M, Xia Y (2012) Noble-metal nanocrystals with concave surfaces: synthesis and applications. Angew Chem—Int Ed 51:7656–7673CrossRefGoogle Scholar
  87. 87.
    Strasser P, Gliech M, Kuehl S, Moeller T (2018) Electrochemical processes on solid shaped nanoparticles with defined facets. Chem Soc Rev 47:715–735CrossRefPubMedGoogle Scholar
  88. 88.
    Navin JK, Grass ME, Somorjai GA, Marsh AL (2009) Characterization of colloidal platinum nanoparticles by MALDI-TOF mass spectrometry. Anal Chem 81:6295–6299CrossRefGoogle Scholar
  89. 89.
    Rioux RM, Song H, Hoefelmeyer JD et al (2005) High-surface-area catalyst design: synthesis, characterization, and reaction studies of platinum nanoparticles in mesoporous SBA-15 silica. J Phys Chem B 109:2192–2202CrossRefPubMedGoogle Scholar
  90. 90.
    Narayanan R, El-Sayed MA (2004) Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Lett 4:1343–1348CrossRefGoogle Scholar
  91. 91.
    Manbeck KA, Musselwhite NE, Carl LM et al (2010) Factors affecting activity and selectivity during cyclohexanone hydrogenation with colloidal platinum nanocatalysts. Appl Catal A Gen 384:58–64CrossRefGoogle Scholar
  92. 92.
    Galeandro-Diamant T, Zanota ML, Sayah R et al (2015) Platinum nanoparticles in suspension are as efficient as Karstedt’s complex for alkene hydrosilylation. Chem Commun 51:16194–16196CrossRefGoogle Scholar
  93. 93.
    Liu Z, Shamsuzzoha M, Ada ET et al (2007) Synthesis and activation of Pt nanoparticles with controlled size for fuel cell electrocatalysts. J Power Sources 164:472–480CrossRefGoogle Scholar
  94. 94.
    Kang W, Li R, Wei D et al (2015) CTAB-reduced synthesis of urchin-like Pt-Cu alloy nanostructures and catalysis study towards the methanol oxidation reaction. RSC Adv 5:94210–94215CrossRefGoogle Scholar
  95. 95.
    Ma H, Wang H, Na C (2015) Microwave-assisted optimization of platinum-nickel nanoalloys for catalytic water treatment. Appl Catal B Environ 163:198–204CrossRefGoogle Scholar
  96. 96.
    Muraza O, Rebrov EV, Berenguer-Murcia A et al (2009) Selectivity control in hydrogenation reactions by nanoconfinement of polymetallic nanoparticles in mesoporous thin films. Appl Catal A Gen 368:87–96CrossRefGoogle Scholar
  97. 97.
    Mourdikoudis S, Chirea M, Zanaga D et al (2015) Governing the morphology of Pt-Au heteronanocrystals with improved electrocatalytic performance. Nanoscale 7:8739–8747CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Rogers SM, Catlow CRA, Chan-Thaw CE et al (2015) Tailoring gold nanoparticle characteristics and the impact on aqueous-phase oxidation of glycerol. ACS Catal 5:4377–4384CrossRefGoogle Scholar
  99. 99.
    Rebrov EV, Berenguer-Murcia A, Johnson BFG, Schouten JC (2008) Gold supported on mesoporous titania thin films for application in microstructured reactors in low-temperature water-gas shift reaction. Catal Today 138:210–215CrossRefGoogle Scholar
  100. 100.
    Bhosale MA, Gupta SSR, Bhanage BM (2016) Size controlled synthesis of gold nanostructures using ketones and their catalytic activity towards reduction of p-nitrophenol. Polyhedron 120:96–102CrossRefGoogle Scholar
  101. 101.
    Fkiri A, Mezni A, Robert C et al (2017) Synthesis of monodisperse gold octahedra in polyol: selective oxidation of stilbene. Colloids Surfaces A Physicochem Eng Asp 530:85–92CrossRefGoogle Scholar
  102. 102.
    Tran M, DePenning R, Turner M, Padalkar S (2016) Effect of citrate ratio and temperature on gold nanoparticle size and morphology. Mater Res Express 3:105027CrossRefGoogle Scholar
  103. 103.
    Suchomel P, Kvitek L, Prucek R et al (2018) Simple size-controlled synthesis of Au nanoparticles and their size-dependent catalytic activity. Sci Rep 8:1–11CrossRefGoogle Scholar
  104. 104.
    Lee YW, Kim M, Kim ZH, Han SW (2009) One-step synthesis of Au @ Pd core—shell nanooctahedron. J Am Chem Soc 131:17036–17037CrossRefPubMedGoogle Scholar
  105. 105.
    Gandarias I, Miedziak PJ, Nowicka E et al (2015) Selective oxidation of n-butanol using gold-palladium supported nanoparticles under base-free conditions. Chemsuschem 8:473–480CrossRefPubMedGoogle Scholar
  106. 106.
    Metin Ö, Sun X, Sun S (2013) Monodisperse gold-palladium alloy nanoparticles and their composition-controlled catalysis in formic acid dehydrogenation under mild conditions. Nanoscale 5:910–912CrossRefPubMedGoogle Scholar
  107. 107.
    Liu JH, Wang AQ, Chi YS et al (2005) Synergistic effect in an Au-Ag alloy nanocatalyst: cO oxidation. J Phys Chem B 109:40–43CrossRefPubMedGoogle Scholar
  108. 108.
    Tsuji M, Matsuo R, Jiang P, Miyamae N, Ueyama D, Nishio M, Hikino S, Kumagae H, Kamarudin KSN, Tang X-L (2008) Shape-dependent evolution of Au@Ag core–shell nanocrystals by PVP-assisted N,N-dimethylformamide reduction. Cryst Growth Des 8:2528–2536CrossRefGoogle Scholar
  109. 109.
    Navlani-García M, Mori K, Nozaki A et al (2016) Investigation of size sensitivity in the hydrogen production from formic acid over carbon-supported Pd nanoparticles. ChemistrySelect 1:1879–1886CrossRefGoogle Scholar
  110. 110.
    Xiao C, Ding H, Shen C et al (2009) Shape-controlled synthesis of palladium nanorods and their magnetic properties. J Phys Chem C 113:13466–13469CrossRefGoogle Scholar
  111. 111.
    Li Y, Boone E, El-Sayed MA (2002) Size effects of PVP-Pd nanoparticles on the catalytic Suzuki reactions in aqueous solution. Langmuir 18:4921–4925CrossRefGoogle Scholar
  112. 112.
    Lim B, Jiang M, Camargo PHC et al (2009) Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science (80-) 324:1302–1305CrossRefGoogle Scholar
  113. 113.
    Zhang H, Jin M, Liu H et al (2011) Facile synthesis of Pd-Pt Alloy nanocages and their enhanced performance for preferential oxidation of co in excess hydrogen. ACS Nano 5:8212–8222CrossRefPubMedGoogle Scholar
  114. 114.
    Menezes WG, Altmann L, Zielasek V et al (2013) Bimetallic Co-Pd catalysts: study of preparation methods and their influence on the selective hydrogenation of acetylene. J Catal 300:125–135CrossRefGoogle Scholar
  115. 115.
    Liu S, Li Y, Ta N et al (2018) Fabrication of palladium-copper nanoparticles with controllable size and chemical composition. J Colloid Interface Sci 526:201–206CrossRefPubMedGoogle Scholar
  116. 116.
    Okhlopkova LB, Kerzhentsev MA, Tuzikov FV et al (2012) Palladium-Zinc catalysts on mesoporous titania prepared by colloid synthesis. II. Synthesis and characterization of PdZn/TiO2coating on inner surface of fused silica capillary. J Nanoparticle Res 14:1088CrossRefGoogle Scholar
  117. 117.
    Kang X, Miao K, Guo Z et al (2018) PdRu alloy nanoparticles of solid solution in atomic scale: size effects on electronic structure and catalytic activity towards electrooxidation of formic acid and methanol. J Catal 364:183–191CrossRefGoogle Scholar
  118. 118.
    Shen J, Scott RWJ, Hayes RE, Semagina N (2015) Structural evolution of bimetallic Pd-Ru catalysts in oxidative and reductive applications. Appl Catal A Gen 502:350–360CrossRefGoogle Scholar
  119. 119.
    Lu P, Teranishi T, Asakura K et al (1999) Polymer-protected Ni/Pd bimetallic nano-clusters: preparation, characterization and catalysis for hydrogenation of nitrobenzene. J Phys Chem B 103:9673–9682CrossRefGoogle Scholar
  120. 120.
    Cooper P, John HJT (1951) A study of the nucleation and growth process in the synthesis of colloidal gold. Discuss Faraday Soc 55:55–75Google Scholar
  121. 121.
    Sau TK, Rogach AL (2010) Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control. Adv Mater 22:1781–1804CrossRefPubMedGoogle Scholar
  122. 122.
    Sau TK, Rogach AL, Jäckel F et al (2010) Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mater 22:1805–1825CrossRefPubMedGoogle Scholar
  123. 123.
    Liu Z, Qi J, Liu M et al (2018) Aqueous synthesis of ultrathin platinum/non-noble metal alloy nanowires for enhanced hydrogen evolution activity. Angew Chem—Int Ed 57:11678–11682CrossRefGoogle Scholar
  124. 124.
    Ataee-Esfahani H, Wang L, Nemoto Y, Yamauchi Y (2010) Synthesis of bimetallic Au@Pt nanoparticles with Au core and nanostructured Pt shell toward highly active electrocatalysts. Chem Mater 22:6310–6318CrossRefGoogle Scholar
  125. 125.
    Wrasman CJ, Boubnov A, Riscoe AR et al (2018) Synthesis of colloidal Pd/Au dilute alloy nanocrystals and their potential for selective catalytic oxidations. J Am Chem Soc 140:12930–12939CrossRefPubMedGoogle Scholar
  126. 126.
    Duan S, Du Z, Fan H, Wang R (2018) Nanostructure optimization of platinum-based nanomaterials for catalytic applications. Nanomaterials 8:949CrossRefPubMedCentralGoogle Scholar
  127. 127.
    Kang Y, Li M, Cai Y et al (2013) Heterogeneous catalysts need not Be so “heterogeneous”: monodisperse Pt nanocrystals by combining shape-controlled synthesis and purification by colloidal recrystallization. J Am Chem Soc 135:2741–2747CrossRefPubMedGoogle Scholar
  128. 128.
    Lai J, Guo S (2017) Design of ultrathin Pt-based multimetallic nanostructures for efficient oxygen reduction electrocatalysis. Small 13:1–15Google Scholar
  129. 129.
    Isaifan RJ, Ntais S, Couillard M, Baranova EA (2015) Size-dependent activity of Pt/yttria-stabilized zirconia catalyst for ethylene and carbon monoxide oxidation in oxygen-free gas environment. J Catal 324:32–40CrossRefGoogle Scholar
  130. 130.
    Chen C, Chen F, Zhang L et al (2015) Importance of platinum particle size for complete oxidation of toluene over Pt/ZSM-5 catalysts. Chem Commun 51:5936–5938CrossRefGoogle Scholar
  131. 131.
    An K, Alayoglu S, Musselwhite N et al (2014) Designed catalysts from Pt nanoparticles supported on macroporous oxides for selective isomerization of n-hexane. J Am Chem Soc 136:6830–6833CrossRefPubMedGoogle Scholar
  132. 132.
    Sapi A, Liu F, Cai X et al (2014) Comparing the catalytic oxidation of ethanol at the solid-gas and solid-liquid interfaces over size-controlled pt nanoparticles: striking differences in kinetics and mechanism. Nano Lett 14:6727–6730CrossRefPubMedGoogle Scholar
  133. 133.
    Callison J, Subramanian ND, Rogers SM et al (2018) Directed aqueous-phase reforming of glycerol through tailored platinum nanoparticles. Appl Catal B Environ 238:618–628CrossRefGoogle Scholar
  134. 134.
    Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem—Int Ed 48:60–103CrossRefGoogle Scholar
  135. 135.
    Fereshteh Z, Rojaee R, Sharifnabi A (2016) Effect of different polymers on morphology and particle size of silver nanoparticles synthesized by modified polyol method. Superlatt Microstruct 98:267–275CrossRefGoogle Scholar
  136. 136.
    Long NV, Ohtaki M, Hien TD et al (2011) Synthesis and characterization of polyhedral and quasi-sphere non-polyhedral Pt nanoparticles: effects of their various surface morphologies and sizes on electrocatalytic activity for fuel cell applications. J Nanoparticle Res 13:5177–5191CrossRefGoogle Scholar
  137. 137.
    Mistry H, Behafarid F, Zhou E et al (2014) Shape-dependent catalytic oxidation of 2-butanol over Pt nanoparticles supported on γ-Al2O3. ACS Catal 4:109–115CrossRefGoogle Scholar
  138. 138.
    Huang X, Tang S, Zhang H et al (2009) Controlled formation of concave tetrahedral/trigonal bipyramidal palladium. J Am Chem Soc 131:13916–13917CrossRefPubMedGoogle Scholar
  139. 139.
    Yu T, Kim DY, Zhang H, Xia Y (2011) Platinum concave nanocubes with high-index facets and their enhanced activity for oxygen reduction reaction. Angew Chem—Int Ed 50:2773–2777CrossRefGoogle Scholar
  140. 140.
    Tsunoyama H, Sakurai H, Negishi Y, Tsukuda T (2005) Size-specific catalytic activity of polymer-stabilized gold nanoclusters for aerobic alcohol oxidation in water. J Am Chem Soc 127:9374–9375CrossRefPubMedGoogle Scholar
  141. 141.
    Donoeva B, de Jongh PE (2018) Colloidal Au catalyst preparation: selective removal of polyvinylpyrrolidone from active Au sites. ChemCatChem 10:989–997CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Villa A, Dimitratos N, Chan-Thaw CE et al (2016) Characterisation of gold catalysts. Chem Soc Rev 45:4953–4994CrossRefPubMedGoogle Scholar
  143. 143.
    Wall MA, Harmsen S, Pal S et al (2017) Surfactant-free shape control of gold nanoparticles enabled by unified theoretical framework of nanocrystal synthesis. Adv Mater 29:1605622CrossRefGoogle Scholar
  144. 144.
    Haider P, Kimmerle B, Krumeich F et al (2008) Gold-catalyzed aerobic oxidation of benzyl alcohol: effect of gold particle size on activity and selectivity in different solvents. Catal Lett 125:169–176CrossRefGoogle Scholar
  145. 145.
    Linares N, Canlas CP, Garcia-Martinez J, Pinnavaia TJ (2014) Colloidal gold immobilized on mesoporous silica as a highly active and selective catalyst for styrene epoxidation with H2O2. Catal Commun 44:50–53CrossRefGoogle Scholar
  146. 146.
    Sun KQ, Luo SW, Xu N, Xu BQ (2008) Gold nano-size effect in Au/SiO2 for selective ethanol oxidation in aqueous solution. Catal Lett 124:238–242CrossRefGoogle Scholar
  147. 147.
    Panigrahi S, Basu S, Praharaj S et al (2007) Synthesis and size-selective catalysis by supported gold nanoparticles: study on heterogeneous and homogeneous catalytic process. J Phys Chem C 111:4596–4605CrossRefGoogle Scholar
  148. 148.
    Kaur R, Pal B (2012) Size and shape dependent attachments of Au nanostructures to TiO2for optimum reactivity of Au-TiO2photocatalysis. J Mol Catal A: Chem 355:39–43CrossRefGoogle Scholar
  149. 149.
    Nanospheres TG, Kundu S, Lau S, Liang H (2009) Shape-controlled catalysis by cetyltrimethylammonium bromide shape-controlled catalysis by cetyltrimethylammonium bromide terminated gold. J Phys Chem 113:5150–5156Google Scholar
  150. 150.
    Gupta SSR, Kantam ML, Bhanage BM (2018) Shape-selective synthesis of gold nanoparticles and their catalytic activity towards reduction of p-nitroaniline. Nano-Struct Nano-Objects 14:125–130CrossRefGoogle Scholar
  151. 151.
    Zhang J, Langille MR, Personick ML et al (2010) Concave cubic gold nanocrystals with high-index facets. J Am Chem Soc 132:14012–14014CrossRefPubMedGoogle Scholar
  152. 152.
    Burrows ND, Harvey S, Idesis FA, Murphy CJ (2017) Understanding the seed-mediated growth of gold nanorods through a fractional factorial design of experiments. Langmuir 33:1891–1907CrossRefPubMedGoogle Scholar
  153. 153.
    Wu Y, Wen M, Navlani-García M et al (2017) Palladium nanoparticles supported on titanium doped graphitic carbon nitride for formic acid dehydrogenation. Chem—An Asian J 12:860–867CrossRefGoogle Scholar
  154. 154.
    Navlani-García M, Salinas-Torres D, Mori K et al (2019) Insights on palladium decorated nitrogen-doped carbon xerogels for the hydrogen production from formic acid. Catal Today 324:90–96CrossRefGoogle Scholar
  155. 155.
    Monai M, Montini T, Gorte RJ, Fornasiero P (2018) Catalytic oxidation of methane: Pd and beyond. Eur J Inorg Chem 2018:2884–2893CrossRefGoogle Scholar
  156. 156.
    Balcells D, Nova A (2018) Designing Pd and Ni catalysts for cross-coupling reactions by minimizing off-cycle species. ACS Catal 8:3499–3515CrossRefGoogle Scholar
  157. 157.
    Le Bras J, Muzart J (2018) Palladium-catalyzed domino dehydrogenation/heck-type reactions of carbonyl compounds. Adv Synth Catal 360:2411–2428CrossRefGoogle Scholar
  158. 158.
    Wang D, Weinstein AB, White PB, Stahl SS (2018) Ligand-promoted palladium-catalyzed aerobic oxidation reactions. Chem Rev 118:2636–2679CrossRefPubMedGoogle Scholar
  159. 159.
    Antolini E (2009) Palladium in fuel cell catalysis. Energy Environ Sci 2:915–931CrossRefGoogle Scholar
  160. 160.
    Yin L, Liebscher J (2007) Carbon-carbon coupling reactions catalyzed by heterogeneous palladium catalysts. Chem Rev 107:133–173CrossRefPubMedGoogle Scholar
  161. 161.
    Gao D, Zhou H, Wang J et al (2015) Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J Am Chem Soc 137:4288–4291CrossRefPubMedGoogle Scholar
  162. 162.
    Johnson JA, Makis JJ, Marvin KA et al (2013) Size-dependent hydrogenation of p-nitrophenol with Pd nanoparticles synthesized with poly(amido)amine dendrimer templates. J Phys Chem C 117:22644–22651CrossRefGoogle Scholar
  163. 163.
    Hokenek S, Kuhn JN (2012) Methanol decomposition over palladium particles supported on silica: role of particle size and co-feeding carbon dioxide on the catalytic properties. ACS Catal 2:1013–1019CrossRefGoogle Scholar
  164. 164.
    Le Bars J, Specht U, Bradley JS, Blackmond DG (1999) A catalytic probe of the surface of colloidal palladium particles using Heck coupling reactions. Langmuir 15:7621–7625CrossRefGoogle Scholar
  165. 165.
    Chinthaginjala JK, Villa A, Su DS et al (2012) Nitrite reduction over Pd supported CNFs: metal particle size effect on selectivity. Catal Today 183:119–123CrossRefGoogle Scholar
  166. 166.
    Hao B, Xiao M, Wang Y et al (2018) Recyclable amphiphilic metal nanoparticle colloid enabled atmospheric oxidation of alcohols. ACS Appl Mater Interfaces 10:34332–34339CrossRefPubMedGoogle Scholar
  167. 167.
    Collins G, Schmidt M, O’Dwyer C et al (2014) The origin of shape sensitivity in palladium-catalyzed Suzuki-Miyaura cross coupling reactions. Angew Chem—Int Ed 53:4142–4145CrossRefGoogle Scholar
  168. 168.
    Collins G, Schmidt M, Odwyer C et al (2014) Enhanced catalytic activity of high-index faceted palladium nanoparticles in suzuki-miyaura coupling due to efficient leaching mechanism. ACS Catal 4:3105–3111CrossRefGoogle Scholar
  169. 169.
    Navlani-García M, Verma P, Mori K et al (2017) Morphology-controlled Pd nanocrystals as catalysts in tandem dehydrogenation-hydrogenation reactions. J Chem Sci 129:1695–1703CrossRefGoogle Scholar
  170. 170.
    Kim SK, Kim C, Lee JH et al (2013) Performance of shape-controlled Pd nanoparticles in the selective hydrogenation of acetylene. J Catal 306:146–154CrossRefGoogle Scholar
  171. 171.
    Lv T, Wang Y, Il Choi S et al (2013) Controlled synthesis of nanosized palladium icosahedra and their catalytic activity towards formic-acid oxidation. Chemsuschem 6:1923–1930CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of Materials and Manufacturing Science, Graduate School of EngineeringOsaka UniversitySuitaJapan
  2. 2.Unit of Elements Strategy Initiative for Catalysts & Batteries (ESICB)Kyoto UniversityKyotoJapan
  3. 3.JST, PRESTOKawaguchiJapan

Personalised recommendations