Skip to main content
Log in

Efficient Catalytic Removal of Formaldehyde over Ag/Co3O4–CeO2 Prepared by Different Method

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

A series of Co3O4–CeO2 supported Ag catalysts were prepared by different methods and the catalytic properties of these catalysts were investigated for the catalytic removal of formaldehyde (HCHO). The Ag/Co3O4–CeO2–H catalyst calcined in a O2/N2 flow and then reduced in a H2/N2 stream exhibited excellent catalytic activity, over which 100% HCHO conversion was achieved at a temperature as low as 60 °C. In addition, the Ag/Co3O4–CeO2–H catalyst also displayed high stability in lifetime testing. Based on a variety of physical–chemical characterization results, it is demonstrated that the larger specific area, easier reducibility and abundant active surface oxygen species served as essential roles in the catalytic removal of HCHO for Ag/Co3O4–CeO2–H catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Quiroz J, Giraudon JM, Gervasini A, Dujardin C, Lancelot C, Trentesaux M, Lamonier JF (2015) Total oxidation of formaldehyde over MnO x -CeO2 catalysts: the effect of acid treatment. ACS Catal 5:2260–2269

    Article  CAS  Google Scholar 

  2. Bai BY, Arandiyan H, Li JH (2013) Comparison of the performance for oxidation of formaldehyde on nano-Co3O4, 2D-Co3O4, and 3D-Co3O4 catalysts. Appl Catal B 142–143:677–683

    Article  Google Scholar 

  3. Wang JL, Yunus R, Li J, Li PL, Zhang PY (2015) In situ synthesis of manganese oxides on polyester fiber for formaldehyde decomposition at room temperature. Appl Surf Sci 357:787–794

    Article  CAS  Google Scholar 

  4. Long B, Tang MN, Rui ZB, Balogun MS, Tong YX, Ji HB, Huang YC (2016) Bifunctional catalytic material: an ultrastable and high-performance surface defect CeO2 nanosheets for formaldehyde thermal oxidation and photocatalytic oxidation. Appl Catal B 181:779–787

    Article  Google Scholar 

  5. Cui WY, Xue D, Yuan XL, Zheng B, Jia MJ, Zhang WX (2017) Acid-treated TiO2 nanobelt supported platinum nanoparticles for the catalytic oxidation of formaldehyde at ambient conditions. Appl Surf Sci 411:105–112

    Article  CAS  Google Scholar 

  6. Chen BB, Zhu XB, Wang YD, Yu LM, Lu JQ, Shi C (2017) Nano-sized gold particles dispersed on HZSM-5 and SiO2 substratesfor catalytic oxidation of HCHO. Catal Today 281:512–519

    Article  CAS  Google Scholar 

  7. Li YB, Zhang CB, He H (2017) Significant enhancement in activity of Pd/TiO2 catalyst for formaldehyde oxidation by Na addition. Catal Today 281:412–417

    Article  CAS  Google Scholar 

  8. Bai BY, Qiao Q, Li JH, Hao JM (2016) Progress in research on catalysts for catalytic oxidation of formaldehyde. Chin J Catal 37:102–122

    Article  CAS  Google Scholar 

  9. Zhu XF, Cheng B, Yu JG, Ho WK (2016) Halogen poisoning effect of Pt-TiO2 for formaldehyde catalytic oxidation performance at room temperature. Appl Surf Sci 364:808–814

    Article  CAS  Google Scholar 

  10. Xu F, Le Y, Cheng B, Jiang CJ (2017) Effect of calcination temperature on formaldehyde oxidation performance of Pt/TiO2 nanofiber composite at room temperature. Appl Surf Sci 426:333–341

    Article  CAS  Google Scholar 

  11. Zhang CB, Li YB, Wang YF, He H (2014) Sodium-promoted Pd/TiO2 for catalytic oxidation of formaldehyde at ambient temperature. Environ Sci Technol 48:5816–5822

    Article  CAS  Google Scholar 

  12. Tang Z, Zhang WD, Li Y, Huang ZM, Guo HS, Wu F, Li JJ (2016) Gold catalysts supported on nanosized iron oxide for low-temperature oxidation of carbon monoxide and formaldehyde. Appl Surf Sci 364:75–80

    Article  CAS  Google Scholar 

  13. Tang XF, Chen JL, Li YG, Li Y, Xu YD, Shen WJ (2006) Complete oxidation of formaldehyde over Ag/MnO x -CeO2 catalysts. Chem Eng J 118:119–125

    Article  CAS  Google Scholar 

  14. Ma L, Wang DS, Li JH, Bai BY, Fu LX, Li YD (2014) Ag/CeO2 nanospheres: efficient catalysts for formaldehyde oxidation. Appl Catal B 148–149:36–43

    Google Scholar 

  15. Qu ZP, Chen D, Sun YH, Wang Y (2014) High catalytic activity for formaldehyde oxidation of AgCo/APTES@MCM-41 prepared by two steps method. Appl Catal A 487:100–109

    Article  CAS  Google Scholar 

  16. Zhang JH, Li YB, Zhang Y, Chen M, Wang L, Zhang CB, He H (2015) Effect of suopport on the activity of Ag-based catalysts for formaldehyde oxidation. Sci Rep 5:12950

    Article  CAS  Google Scholar 

  17. Bai BY, Li JH (2014) Positive effects of K+ ions on three-dimensional mesoporous Ag/Co3O4 catalyst for HCHO oxidation. ACS Catal 4:2753–2762

    Article  CAS  Google Scholar 

  18. Chen D, Qu Z, Zhang WW, Li XY, Zhao QD, Shi Y (2011) TPD and TPSR studies of formaldehyde adsorption and surface reaction activity over Ag/MCM-41 catalysts. Colloids Surf A 379:136–142

    Article  CAS  Google Scholar 

  19. Chen D, Qu ZP, Lv Y, Lu X, Chen WF, Gao XY (2015) Effect of oxygen pretreatment on the surface catalytic oxidation of HCHO on Ag/MCM-41 catalysts. J Mol Catal A 404–405:98–105

    Article  Google Scholar 

  20. Gac W, Derylo-Marczewska A, Pasieczna-Patkowska S, Popivnyak N, Zukocinski G (2007) The influence of the preparation methods and pretreatment conditions on the properties of Ag-MCM-41 catalysts. J Mol Catal A 268:15–23

    Article  CAS  Google Scholar 

  21. Lu SH, Wang F, Chen CC, Huang FL, Li KL (2017) Catalytic oxidation of formaldehyde over CeO2-Co3O4 catalysts. J Rare Earth 35:867–874

    Article  CAS  Google Scholar 

  22. Mamontov GV, Grabchenko MV, Sobolev VI, Zaikovskii VI, Vodyankina OV (2016) Ethanol dehydrogenation over Ag-CeO2/SiO2 catalyst: role of Ag-CeO2 interface. Appl Catal A 528:161–167

    Article  CAS  Google Scholar 

  23. Huang HB, Hu P, Huang HL, Chen JD, Ye XG, Leung DYC (2014) Highly dispersed and active supported Pt nanoparticles for gaseous formaldehyde oxidation: influence of particle size. Chem Eng J 252:320–326

    Article  CAS  Google Scholar 

  24. Huang HB, Leung DYC (2011) Complete oxidation of formaldehyde at room temperature using TiO2 supported metallic Pd nanoparticles. ACS Catal 1:348–354

    Article  CAS  Google Scholar 

  25. Sheng JJ, Li CT, Zhao LK, Du XY, Gao L, Zeng GG (2017) Efficient removal of HCHO from simulated coal combustion flue gas using CuO-CeO2 supported on cylindrical activated coke. Fuel 197:397–406

    Article  CAS  Google Scholar 

  26. Chen HY, Rui ZB, Wang XY, Ji HB (2015) Multifunctional Pt/ZSM-5 catalyst for complete oxidationof gaseous formaldehyde at ambient temperature. Catal Today 258:56–63

    Article  CAS  Google Scholar 

  27. Lu H, Jiang CF, Ding ZW, Wang W, Chu W, Feng YY (2016) Effects of ultrasonic impregnation combined with calcination in N2 atmosphere on the property of Co3O4/CeO2 composites for catalytic methane combustion. J Energ Chem 25:387–392

    Article  Google Scholar 

  28. Iwanek E, Krawczyk K, Petryk J, Sobczak JW, Kaszkur Z (2011) Direct nitrous oxide decomposition with CoO x -CeO2 catalysts. Appl Catal B 106:416–422

    Article  CAS  Google Scholar 

  29. Mahadevaiah TCN, Singh S, Friedrich HB (2016) Effect of Cu additives on the performance of a cobalt substituted ceria (Ce0.90Co0.10O2–δ) catalyst in total and preferential CO oxidation. Appl Catal B 182:1–14

    Article  Google Scholar 

  30. Chagas CA, Souza EF, Manfro RL, Landi SM, Souza MMVM., Schmal M (2016) Copper as promoter of the NiO-CeO2 catalyst in the preferential CO oxidation. Appl Catal B 182:257–265

    Article  CAS  Google Scholar 

  31. Akram S, Wang Z, Wang Q, Chen L, Shen GL, Han N, Chen YF, Ge GL (2016) Low-temperature efficient degradation of ethyl acetate catalyzed by lattice doped CeO2-CoO x nanocomposites. Catal Commun 73:123–127

    Article  CAS  Google Scholar 

  32. Xue L, Zhang CB, He H, Teraoka Y (2007) Catalytic decomposition of N2O over CeO2 promoted Co3O4 spinel catalyst. Appl Catal B 75:167–174

    Article  CAS  Google Scholar 

  33. Pérez-Hernández R, Gutiérrez-Wing C, Mondragón-Galicia G, Gutiérrez-Martínez A, Deepak FL, Mendoza-Anaya D (2013) Ag nanowires as precursors to synthesize novel Ag-CeO2 nanotubes for H2 production by methanol reforming. Catal Today 212:225–231

    Article  Google Scholar 

  34. Chen Y, Liu DS, Yang LJ, Meng M, Zhang J, Zheng LR, Chu SQ, Hu TD (2013) Ternary composite oxide catalysts CuO/Co3O4-CeO2 with wide temperature-window for the preferential oxidation of CO in H2-rich stream. Chem Eng J 234:88–98

    Article  CAS  Google Scholar 

  35. Stathatos E, Lianos P, Falaras P, Siokou A (2000) Photocatalytically deposited silver nanoparticles on mesoporous TiO2 films. Langmuir 16:2398–2400

    Article  CAS  Google Scholar 

  36. Liu MH, Wu XD, Liu S, Gao YX, Chen Z, Ma Y, Ran R, Weng D (2017) Study of Ag/CeO2 catalysts for naphthalene oxidation: balancing the oxygen availability and oxygen regeneration capacity. Appl Catal B 219:231–240

    Article  CAS  Google Scholar 

  37. Luo JY, Meng M, Li X, Li XG, Zha YQ, Hu TD, Xie YN, Zhang J (2008) Mesoporous Co3O4-CeO2 and Pd/Co3O4-CeO2 catalysts: synthesis, characterization and mechanistic study of their catalytic properties for low-temperature CO oxidation. J Catal 254:310–324

    Article  CAS  Google Scholar 

  38. Ma CY, Wang DH, Xue WJ, Dou BJ, Wang HL, Hao ZP (2011) Investigation of formaldehyde oxidation over Co3O4-CeO2 and Au/Co3O4-CeO2 catalysts at room temperature: effective removal and determination of reaction mechanism. Environ Sci Technol 45:3628–3634

    Article  CAS  Google Scholar 

  39. Chang JL, Ma QL, Ma JC, Ma HZ (2016) Synthesis of Fe3O4 nanowire@CeO2/Ag nanocomposites with enhanced photocatalytic activity under sunlight exposure. Ceram Int 42:11827–11837

    Article  CAS  Google Scholar 

  40. Zhao FZ, Gong M, Zhang GY, Li JL (2015) Effect of the loading content of CuO on the activity and structure of CuO/Ce-Mn-O catalysts for CO oxidation. J Rare Earth 33:604–610

    Article  CAS  Google Scholar 

  41. Dupin JC, Gonbeau D, Vinatier P, Levasseur A (2000) Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys Chem Chem Phys 2:1319–1324

    Article  CAS  Google Scholar 

  42. Hu P, Amghouz Z, Huang Z, Xu F, Chen Y, Tang X (2015) Surface-confined atomic silver centers catalyzing formaldehyde oxidation. Environ Sci Technol 49:2384–2390

    Article  CAS  Google Scholar 

  43. Ghosh S, Acharyya SS, Tiwari R, Sarkar B, Singha RK, Pendem C, Sasaki T, Bal R (2014) Selective oxidation of propylene to propylene oxide over silver-supported tungsten oxide nanostructure with molecular oxygen. ACS Catal 4:2169–2174

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was sponsored financially by the College Students’ Innovative Entrepreneurial Training Program of Xi’an Shiyou University and Shaan xi Province (No. 201610705027 and 2017107051486), the Science & Technology Plan Project of Xi’an City (No. 2017081CG/RC044 (XASY006)), the Special Scientific Research of Shaan xi Educational Committee (No. 17JK0608) and the National Nature Science Foundation of China (No. 21606177).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suhong Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, S., Chen, C., Wang, X. et al. Efficient Catalytic Removal of Formaldehyde over Ag/Co3O4–CeO2 Prepared by Different Method. Catal Surv Asia 22, 63–71 (2018). https://doi.org/10.1007/s10563-018-9240-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-018-9240-y

Keywords

Navigation