Advertisement

Catalysis Surveys from Asia

, Volume 19, Issue 4, pp 223–235 | Cite as

Advancements in the Conversion of Carbon Dioxide to Cyclic Carbonates Using Metal Organic Frameworks as Catalysts

  • Amal Cherian Kathalikkattil
  • Robin Babu
  • Jose Tharun
  • Roshith Roshan
  • Dae-Won ParkEmail author
Article

Abstract

Global warming has begun to show its impact on the environment, and it is time to take steps to manage CO2 emissions, so as to regain the balance of carbon cycle. In addition to various capture and sequestration techniques, conversion of CO2 to value added products is high relevant. However, the inertness of CO2 makes catalysts an indispensable part of the process. CO2 undergoes cycloaddition with epoxides to produce cyclic carbonates, which have utility in various applications. Considering the necessity for heterogeneity and activity under ambient conditions, metal organic framework (MOF) catalysts have recently emerged as prospective candidates for cyclic carbonate synthesis. These porous hybrid inorganic–organic crystals are also excellent materials for gas storage and separation, including CO2 gas. Thus, MOFs could efficiently capture CO2 and catalytically convert them to cyclic carbonates. In this review, we discuss the recent advancements in the design of MOF catalysts for cyclic carbonate synthesis.

Keywords

Carbon dioxide Epoxide Cyclic carbonate Metal organic framework Heterogeneous catalysis 

Notes

Acknowledgments

This work was supported by Global Frontier Hybrid Interface Materials (GFHIM 2014043321) and Basic Research Program (2014-2055412) through the National Research Foundation of Korea.

References

  1. 1.
    Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, Bae TH, Long JR (2012) Chem Rev 112:724CrossRefGoogle Scholar
  2. 2.
    Kenarsari SD, Yang D, Jiang G, Zhang S, Wang J, Russell AG, Weif Q, Fan M (2013) RSC Adv 3:22739CrossRefGoogle Scholar
  3. 3.
    Markewitz P, Kuckshinrichs W, Leitner W, Linssen J, Zapp P, Bongartz R, Schreibera A, Muller TE (2012) Energy Environ Sci 5:7281CrossRefGoogle Scholar
  4. 4.
    Metcalfe IS, North M, Pasqualea R, Thursfield A (2010) Energy Environ Sci 3:212CrossRefGoogle Scholar
  5. 5.
    Sakakura T, Saito Y, Okano M, Choi JC, Sako T (1998) J Org Chem 63:7095CrossRefGoogle Scholar
  6. 6.
    Yoshida M, Ihara M (2004) Chem Eur J 10:2886CrossRefGoogle Scholar
  7. 7.
    Shi F, Deng Y, SiMa T, Peng J, Gu Y, Qiao B (2003) Angew Chem Int Ed 42:3257CrossRefGoogle Scholar
  8. 8.
    Zhang Z, Xie Y, Li W, Hu S, Song J, Jiang T, Han B (2008) Angew Chem Int Ed 47:1127CrossRefGoogle Scholar
  9. 9.
    Srivastava R, Manju MD, Srinivas D, Ratnasamy P (2004) Catal Lett 97:41CrossRefGoogle Scholar
  10. 10.
    Caló V, Nacci A, Monopoli A, Fanizzi A (2002) Org Lett 4:2561CrossRefGoogle Scholar
  11. 11.
    Kim DW, Roshan R, Tharun J, Cherian A, Park DW (2013) Korean J Chem Eng 30:1973CrossRefGoogle Scholar
  12. 12.
    Schlichte K, Kratzke T, Kaskel S (2004) Micro Meso Mater 73:81CrossRefGoogle Scholar
  13. 13.
    Chui SSY, Lo SMF, Charmant JPH, Orpen AG, Williams ID (1999) Science 283:1148CrossRefGoogle Scholar
  14. 14.
    Rieter WJ, Taylor KML, Lin W (2007) J Am Chem Soc 129:9852CrossRefGoogle Scholar
  15. 15.
    Millward AR, Yaghi OM (2005) J Am Chem Soc 127:17998CrossRefGoogle Scholar
  16. 16.
    Horcajada P, Serre C, Maurin G, Ramsahye NA, Balas F, Vallet-Regí M, Sebban M, Taulelle F, Férey G (2008) J Am Chem Soc 130:6774CrossRefGoogle Scholar
  17. 17.
    Horcajada P, Gref R, Baati T, Allan PK, Maurin G, Couvreur P, Ferey G, Morris RE, Serre C (2012) Chem Rev 112:1232CrossRefGoogle Scholar
  18. 18.
    Bisht KK, Parmar B, Rachuri Y, Kathalikattil AC, Suresh E (2015) Cryst Eng Commun. doi: 10.1039/C5CE00776C Google Scholar
  19. 19.
    Hasegawa S, Horike S, Matsuda R, Furukawa S, Mochizuki K, Kinoshita Y, Kitagawa S (2007) J Am Chem Soc 129:2607CrossRefGoogle Scholar
  20. 20.
    Alaerts L, Séguin E, Poelman H, Thibault-Starzyk F, Jacobs PA, Vos DED (2006) Chem Eur J 12:7353CrossRefGoogle Scholar
  21. 21.
    Gándara F, Gomez-Lor B, Gutiérrez-Puebla E, Iglesias M, Monge MA, Proserpio DM, Snejko N (2008) Chem Mater 20:72CrossRefGoogle Scholar
  22. 22.
    Dewa T, Saiki T, Aoyama Y (2001) J Am Chem Soc 123:502CrossRefGoogle Scholar
  23. 23.
    Hu A, Ngo HL, Lin W (2003) Angew Chem Int Ed 42:6000CrossRefGoogle Scholar
  24. 24.
    Pan L, Liu H, Lei X, Huang X, Olson DH, Turro NJ, Li J (2003) Angew Chem Int Ed 42:542CrossRefGoogle Scholar
  25. 25.
    Song J, Zhang Z, Hu S, Wu T, Jiang T, Han B (2009) Green Chem 11:1031CrossRefGoogle Scholar
  26. 26.
    Kleist W, Jutz F, Maciejewski M, Baiker A (2009) Eur J Inorg Chem 24:3552CrossRefGoogle Scholar
  27. 27.
    Cho HY, Yang DA, Kim J, Jeong SY, Ahn WS (2012) Catal Today 185:35CrossRefGoogle Scholar
  28. 28.
    Yang DA, Cho HY, Kim J, Yang ST, Ahn WS (2012) Energy Environ Sci 5:6465CrossRefGoogle Scholar
  29. 29.
    Zalomaeva OV, Maksimchuk NV, Chibiryaev AM, Kovalenko KA, Fedin VP, Balzhinimaev BS (2013) J Energy Chem 22:130CrossRefGoogle Scholar
  30. 30.
    Kim SN, Kim J, Kim HY, Cho HY, Ahn WS (2013) Catal Today 204:85CrossRefGoogle Scholar
  31. 31.
    Lescouet T, Chizallet C, Farrusseng D (2012) ChemCatChem 4:1725CrossRefGoogle Scholar
  32. 32.
    Guillerm V, Weseliński ŁJ, Belmabkhout Y, Cairns AJ, D’Elia V, Wojtas Ł, Adil K, Eddaoudi M (2014) Nat Chem 6:673Google Scholar
  33. 33.
    Macias EE, Ratnasamy P, Carreon MA (2012) Catal Today 198:215CrossRefGoogle Scholar
  34. 34.
    Kim J, Kim SN, Jang HG, Seo G, Ahn WS (2013) Appl Catal A: Gen 453:175CrossRefGoogle Scholar
  35. 35.
    Miralda CM, Macias EE, Zhu M, Ratnasamy P, Carreon MA (2012) ACS Catal 2:180CrossRefGoogle Scholar
  36. 36.
    Jose T, Hwang Y, Kim DW, Kim M, Park DW (2015) Catal Today 245:61CrossRefGoogle Scholar
  37. 37.
    Tharun J, Mathai G, Kathalikkattil AC, Roshan R, Won YS, Cho SJ, Chang JS, Park DW (2015) ChemPlusChem 80:715CrossRefGoogle Scholar
  38. 38.
    Yang L, Yu L, Diao G, Sun M, Cheng G, Chen S (2014) J Mol Catal A 392:278CrossRefGoogle Scholar
  39. 39.
    Kathalikkattil AC, Roshan R, Tharun J, Soek HG, Ryu HS, Park DW (2014) ChemCatChem 6:284CrossRefGoogle Scholar
  40. 40.
    Gao WY, Wojtas L, Ma S (2014) Chem Commun 50:5316CrossRefGoogle Scholar
  41. 41.
    Gao WY, Chen Y, Niu Y, Williams K, Cash L, Perez PJ, Wojtas L, Cai J, Chen YS, Ma S (2014) Angew Chem Int Ed 53:2615CrossRefGoogle Scholar
  42. 42.
    Ren Y, Shi Y, Chen J, Yang S, Qi C, Jiang H (2013) RSC Adv 3:2167CrossRefGoogle Scholar
  43. 43.
    Ren Y, Cheng X, Yang S, Qi C, Jiang H, Mao Q (2013) Dalton Trans 42:9930CrossRefGoogle Scholar
  44. 44.
    Feng D, Chung WC, Wei Z, Gu ZY, Jiang HL, Chen YP, Darensbourg DJ, Zhou HC (2013) J Am Chem Soc 135:17105CrossRefGoogle Scholar
  45. 45.
    Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M, Omar MY (2002) Science 295:469CrossRefGoogle Scholar
  46. 46.
    Sumida K, Brown CM, Herm ZR, Chavan S, Bordiga S, Long JR (2011) Chem Commun 47:1157CrossRefGoogle Scholar
  47. 47.
    Suslick KS, Choe SB, Cichowlas AA, Grinstaff MW (1991) Nature 353:414CrossRefGoogle Scholar
  48. 48.
    Beyzavi MH, Klet RC, Tussupbayev S, Borycz J, Vermeulen NA, Cramer CJ, Stoddart JF, Hupp JT, Farha OK (2014) J Am Chem Soc 136:15861CrossRefGoogle Scholar
  49. 49.
    Kathalikkattil AC, Kim DW, Tharun J, Soek HG, Roshan R, Park DW (2014) Green Chem 16:1607CrossRefGoogle Scholar
  50. 50.
    Feller RK, Cheetham AK (2008) Dalton Trans 15:2034CrossRefGoogle Scholar
  51. 51.
    Kathalikkattil AC, Park DW (2013) J Nanosci Nanotechnol 13:3CrossRefGoogle Scholar
  52. 52.
    Kim YJ, Park DW (2012) J Nanosci Nanotechnol 12:1CrossRefGoogle Scholar
  53. 53.
  54. 54.
    Zhu M, Srinivas D, Bhogeswararao S, Ratnsamy P, Carreon MA (2013) Catal Commun 32:36CrossRefGoogle Scholar
  55. 55.
    Zalomaeva OV, Chibiryaev AM, Kovalenko KA, Kholdoeva OA, Balzhin-imaev BS, Fedin VP (2013) J Catal 298:179CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Amal Cherian Kathalikkattil
    • 1
  • Robin Babu
    • 1
  • Jose Tharun
    • 1
  • Roshith Roshan
    • 1
  • Dae-Won Park
    • 1
    Email author
  1. 1.School of Chemical and Biomolecular EngineeringPusan National UniversityBusanKorea

Personalised recommendations