Catalysis Surveys from Asia

, Volume 18, Issue 1, pp 13–23 | Cite as

Sulfation and Desulfation Mechanisms on Pt–BaO/Al2O3 NOx Storage-Reduction (NSR) Catalysts

Article

Abstract

NOx storage-reduction (NSR) catalyst is regarded as the promising solution to effectively remove NOx emitted from lean-burn engines. However, sulfur poisoning remains the big obstacle for NSR technology to overcome. Here fundamental studies on NSR catalyst, especially focusing on the various characteristics of sulfur poisoning and regeneration mechanism, were reviewed. Various aspects of sulfation mechanism such as the roles of Pt and Ba, and the types of sulfate species were investigated. It was found that the desulfation of barium sulfate with H2 resulted in the transformation into barium oxide (BaO) or barium sulfide (BaS) depending on the amount of barium loading and the sulfur loading, based on the combined temperature programmed reaction with hydrogen, Sulfur K-edge X-ray absorption near-edge spectroscopy and time-resolved X-ray diffraction results. H2O played a critical role in converting BaS into BaO, thus promoting the desulfation by producing the additional H2S. The overall sulfation and desulfation scheme was proposed by integrating the results obtained in this study.

Keywords

Review NOx storage-reduction Sulfation Desulfation Pt–BaO/Al2O3 Mechanism 

References

  1. 1.
    Liu ZM, Woo SI (2006) Catal Rev Sci Eng 48:43–89CrossRefGoogle Scholar
  2. 2.
    Johnson T (2008) Platin Met Rev 52:23–37CrossRefGoogle Scholar
  3. 3.
    Kwak JH, Tonkyn RG, Kim DH, Szanyi J, Peden CHF (2010) J Catal 275:187–190CrossRefGoogle Scholar
  4. 4.
    Fickel DW, D’Addio E, Lauterbach JA, Lobo RF (2011) Appl Catal B 102:441–448CrossRefGoogle Scholar
  5. 5.
    Kim DH, Chin YH, Kwak JH, Peden CHF (2008) Catal Lett 124:39–45CrossRefGoogle Scholar
  6. 6.
    Roy S, Baiker A (2009) Chem Rev 109:4054–4091CrossRefGoogle Scholar
  7. 7.
    Epling WS, Campbell LE, Yezerets A, Currier NW, Parks JE (2004) Catal Rev Sci Eng 46:163–245CrossRefGoogle Scholar
  8. 8.
    Matsumoto S (1996) Catal Today 29:43–45CrossRefGoogle Scholar
  9. 9.
    Takahashi N, Shinjoh H, Iijima T, Suzuki T, Yamazaki K, Yokota K, Suzuki H, Miyoshi N, Matsumoto S, Tanizawa T, Tanaka T, Tateishi S, Kasahara K (1996) Catal Today 27:63–69CrossRefGoogle Scholar
  10. 10.
    Gill LJ, Blakeman PG, Twigg MV, Walker AP (2004) Top Catal 28:157–164CrossRefGoogle Scholar
  11. 11.
    Lietti L, Forzatti P, Nova I, Tronconi E (2001) J Catal 204:175–191CrossRefGoogle Scholar
  12. 12.
    Olsson L, Persson H, Fridell E, Skoglundh M, Andersson B (2001) J Phys Chem B 105:6895–6906CrossRefGoogle Scholar
  13. 13.
    Olsson L, Fridell E (2002) J Catal 210:340–353CrossRefGoogle Scholar
  14. 14.
    Epling WS, Parks JE, Campbell GC, Yezerets A, Currier NW, Campbell LE (2004) Catal Today 96:21–30CrossRefGoogle Scholar
  15. 15.
    Nova I, Castoldi L, Lietti L, Tronconi E, Forzatti P, Prinetto F, Ghiotti G (2004) J Catal 222:377–388CrossRefGoogle Scholar
  16. 16.
    Scotti A, Nova I, Tronconi E, Castoldi L, Lietti L, Forzatti P (2004) Ind Eng Chem Res 43:4522–4534CrossRefGoogle Scholar
  17. 17.
    Nova I, Lietti L, Castoldi L, Tronconi E, Forzatti P (2006) J Catal 239:244–254CrossRefGoogle Scholar
  18. 18.
    Cumaranatunge L, Mulla SS, Yezerets A, Currier NW, Delgass WN, Ribeiro FH (2007) J Catal 246:29–34CrossRefGoogle Scholar
  19. 19.
    Mulla SS, Chaugule SS, Yezerets A, Currier NW, Delgass WN, Ribeiro FH (2008) Catal Today 136:136–145CrossRefGoogle Scholar
  20. 20.
    Chaugule SS, Yezerets A, Currier NW, Ribeiro FH, Delgass WN (2010) Catal Today 151:291–303CrossRefGoogle Scholar
  21. 21.
    Schneider WF, Hass KC, Miletic M, Gland JL (2002) J Phys Chem B 106:7405–7413CrossRefGoogle Scholar
  22. 22.
    Gronbeck H, Broqvist P, Panas I (2006) Surf Sci 600:403–408CrossRefGoogle Scholar
  23. 23.
    Kwak JH, Kim DH, Szailer T, Peden CHF, Szanyi J (2006) Catal Lett 111:119–126CrossRefGoogle Scholar
  24. 24.
    Kwak JH, Mei DH, Yi CW, Kim DH, Peden CHF, Allard LF, Szanyi J (2009) J Catal 261:17–22CrossRefGoogle Scholar
  25. 25.
    Mei DH, Ge QF, Kwak JH, Kim DH, Szanyi J, Peden CHF (2008) J Phys Chem C 112:18050–18060CrossRefGoogle Scholar
  26. 26.
    Amberntsson A, Skoglundh M, Jonsson M, Fridell E (2002) Catal Today 73:279–286CrossRefGoogle Scholar
  27. 27.
    Breen JP, Marella M, Pistarino C, Ross JRH (2002) Catal Lett 80:123–128CrossRefGoogle Scholar
  28. 28.
    Kim DH, Chin YH, Kwak JH, Szanyi J, Peden CHF (2005) Catal Lett 105:259–268CrossRefGoogle Scholar
  29. 29.
    Jang BH, Yeon TH, Han HS, Park YK, Yie JE (2001) Catal Lett 77:21–28CrossRefGoogle Scholar
  30. 30.
    Graham GW, Jen HW, Chun W, Sun HP, Pan XQ, McCabe RW (2004) Catal Lett 93:129–134CrossRefGoogle Scholar
  31. 31.
    Ji YY, Easterling V, Graham U, Fisk C, Crocker M, Choi JS (2011) Appl Catal B 103:413–427CrossRefGoogle Scholar
  32. 32.
    Kim DH, Chin YH, Muntean GG, Yezeretz A, Currier NW, Epling WS, Chen HY, Hess H, Peden CHF (2006) Ind Eng Chem Res 45:8815–8821CrossRefGoogle Scholar
  33. 33.
    Kim DH, Chin YH, Muntean G, Yezerets A, Currier N, Epling W, Chen HY, Hess H, Peden CHF (2007) Ind Eng Chem Res 46:2735–2740CrossRefGoogle Scholar
  34. 34.
    Amberntsson A, Skoglundh M, Ljungstrom S, Fridell E (2003) J Catal 217:253–263CrossRefGoogle Scholar
  35. 35.
    Rodriguez JA, Hrbek J (1999) Acc Chem Res 32:719–728CrossRefGoogle Scholar
  36. 36.
    Kim DH, Kwak JH, Szanyi J, Cho SJ, Peden CHF (2008) J Phys Chem C 112:2981–2987CrossRefGoogle Scholar
  37. 37.
    Yi CW, Kwak JH, Peden CHF, Wang CM, Szanyi J (2007) J Phys Chem C 111:14942–14944CrossRefGoogle Scholar
  38. 38.
    Szanyi J, Kwak JH, Kim DH, Burton SD, Peden CHF (2005) J Phys Chem B 109:27–29CrossRefGoogle Scholar
  39. 39.
    Kim DH, Kwak JH, Szanyi J, Burton SD, Peden CHF (2007) Appl Catal B 72:233–239CrossRefGoogle Scholar
  40. 40.
    Cant NW, Patterson MJ (2002) Catal Today 73:271–278CrossRefGoogle Scholar
  41. 41.
    Szailer T, Kwak JH, Kim DH, Hanson JC, Peden CHF, Szanyi J (2006) J Catal 239:51–64CrossRefGoogle Scholar
  42. 42.
    Kim DH, Szanyi J, Kwak JH, Szailer T, Hanson J, Wang CM, Peden CHF (2006) J Phys Chem B 110:10441–10448CrossRefGoogle Scholar
  43. 43.
    Dathe H, Jentys A, Lercher JA (2005) J Phys Chem B 109:21842–21846CrossRefGoogle Scholar
  44. 44.
    Kim DH, Szanyi J, Kwak JH, Wang XQ, Hanson JC, Engelhard M, Peden CHF (2009) J Phys Chem C 113:7336–7341CrossRefGoogle Scholar
  45. 45.
    Szanyi J, Kwak JH, Hanson J, Wang CM, Szailer T, Peden CHF (2005) J Phys Chem B 109:7339–7344CrossRefGoogle Scholar
  46. 46.
    Kim DH, Kwak JH, Wang XQ, Szanyi J, Peden CH (2008) Catal Today 136:183–187CrossRefGoogle Scholar
  47. 47.
    Ota K, Conger WL (1977) Int J Hydrogen Energy 2:101–106CrossRefGoogle Scholar
  48. 48.
    Kim DH, Kwak JH, Szanyi J, Peden CHF (2012) Appl Catal B 111:342–348CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.School of Chemical and Biological Engineering, Institute of Chemical ProcessesSeoul National UniversitySeoulRepublic of Korea

Personalised recommendations