Advertisement

Catalysis Surveys from Asia

, Volume 16, Issue 1, pp 14–27 | Cite as

Shape-Controlled Nanocrystals for Catalytic Applications

  • Hyunjoo LeeEmail author
  • Cheonghee Kim
  • Sungeun Yang
  • Joung Woo Han
  • Jiyeon Kim
Article

Abstract

The activity, selectivity, and long-term stability of catalyst nanoparticles can be enhanced by shape modulation. Such shaped catalytic nanocrystals have well-defined surface crystalline structures on which the cleavage and recombination of chemical bonds can be rationally controlled. Metal and metal oxide nanocrystals have been synthesized in various shapes using wet chemistry techniques such as reducing metal precursors in the presence of the surface-capping agents. The surface-capping agents should be removed prior to the catalytic chemical reaction, which necessitates clean catalytically active surface. The removal process should be performed very carefully because this removal often causes shape deformation. A few examples in which the surface-capping agents contribute positively to the chemical reactions have been reported. The examples described in this review include shaped metal, metal composite, and metal oxide nanocrystals that show enhanced catalytic activity, selectivity, and long-term stability for various gas-phase, liquid-phase, or electrocatalytic reactions. Although most of the studies using these shaped nanocrystals for catalytic applications have focused on low-index surfaces, nanocrystals with high-index facets and their catalytic applications have recently been reported. By bridging surface studies with nanoparticle catalysts using shape modulation, catalysts with improved properties can be rationally designed.

Keywords

Shape-control Nanocrystal Catalysts Platinum Surface-capping agents 

Notes

Acknowledgments

This work was supported by the DAPA/ADD, the National Research Foundation of Korea (NRF-2009-C1AAA001-0092926), the New & Renewable Energy (No. 20093021030021) and the Human Resources Development (No. 20104010100500) programs of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy.

References

  1. 1.
    Davis SM, Zaera F, Somorjai GA (1984) J Catal 85:206CrossRefGoogle Scholar
  2. 2.
    Zaera F, Godbey D, Somorjai GA (1986) J Catal 101:73CrossRefGoogle Scholar
  3. 3.
    Solla-Gullon J, Vidal-Iglesias FJ, Lopez-Cudero A, Garnier E, Feliu JM, Aldaza A (2008) Phys Chem Chem Phys 10:3689CrossRefGoogle Scholar
  4. 4.
    Park J, Yoon DY, Ki Y (2009) KJChE 26:258Google Scholar
  5. 5.
    Kim ND, Oh S, Joo JB, Jung KS, Yi J (2010) KJChE 27:431Google Scholar
  6. 6.
    Kim JK, Kim Y, Park JW, Bae JS, Yoon DY, Lee JG, Kim JH, Han C (2009) KJChE 26:32Google Scholar
  7. 7.
    Kim BJ, Bang J, Kim SH, Kim J (2010) KJChE 27:693Google Scholar
  8. 8.
    Lee GS, Lee JH, Choi H, Ahn DJ (2010) KJChE 27:697Google Scholar
  9. 9.
    Jun YW, Lee JH, Choi JS, Cheon J (2005) J Phys Chem B 109:14795CrossRefGoogle Scholar
  10. 10.
    Xiong YJ, Lim B, Skrabalak SE, Xia YN (2009) Angew Chem Int Ed 48:60CrossRefGoogle Scholar
  11. 11.
    Xiong YJ, Xia YN (2007) Adv Mater 19:3385CrossRefGoogle Scholar
  12. 12.
    Xiong YJ, Cai HG, Wiley BJ, Wang JG, Kim MJ, Xia YN (2007) J Am Chem Soc 129:3665CrossRefGoogle Scholar
  13. 13.
    Lim B, Jiang MJ, Tao J, Camargo PHC, Zhu YM, Xia YN (2009) Adv Funct Mater 19:189CrossRefGoogle Scholar
  14. 14.
    Lee H, Habas SE, Kweskin S, Butcher D, Somorjai GA, Yang PD (2006) Angew Chem Int Ed 45:7824CrossRefGoogle Scholar
  15. 15.
    Koike R, Jalem R, Kawamura G, Yang Y, Sasaki Y, Nogami M (2010) J Phys Chem Lett 1:568CrossRefGoogle Scholar
  16. 16.
    Ren J, Tilley RD (2007) Small 3:1508CrossRefGoogle Scholar
  17. 17.
    Tao A, Sinsermsuksakul P, Yang P (2006) Angew Chem Int Ed 45:4597CrossRefGoogle Scholar
  18. 18.
    Demortiere A, Launois P, Goubet N, Albouy PA, Petit C (2008) J Phys Chem B 112:14583CrossRefGoogle Scholar
  19. 19.
    Niu ZQ, Peng Q, Gong M, Rong HP, Li YD (2011) Angew Chem Int Ed 50:6315CrossRefGoogle Scholar
  20. 20.
    Shavel A, Rodriguez-Gonzalez B, Pacifico J, Spasova M, Farle M, Liz-Marzan LM (2009) Chem Mater 21:1326CrossRefGoogle Scholar
  21. 21.
    Sui Y, Fu W, Yang H, Zeng Y, Zhang Y, Zhao Q, Li Y, Zhou X, Leng Y, Li M, Zou G (2009) Cryst Growth Des 10:99CrossRefGoogle Scholar
  22. 22.
    Zeng J, Zheng YQ, Rycenga M, Tao J, Li ZY, Zhang QA, Zhu YM, Xia YN (2010) J Am Chem Soc 132:8552CrossRefGoogle Scholar
  23. 23.
    Herricks T, Chen JY, Xia YN (2004) Nano Lett 4:2367CrossRefGoogle Scholar
  24. 24.
    Seo D, Yoo CI, Park JC, Park SM, Ryu S, Song H (2008) Angew Chem Int Ed 47:763CrossRefGoogle Scholar
  25. 25.
    Song H, Kim F, Connor S, Somorjai GA, Yang P (2004) J Phys Chem B 109:188CrossRefGoogle Scholar
  26. 26.
    Wang C, Daimon H, Onodera T, Koda T, Sun SH (2008) Angew Chem Int Ed 47:3588CrossRefGoogle Scholar
  27. 27.
    Zhang J, Fang JY (2009) J Am Chem Soc 131:18543CrossRefGoogle Scholar
  28. 28.
    Habas SE, Lee H, Radmilovic V, Somorjai GA, Yang P (2007) Nat Mater 6:692CrossRefGoogle Scholar
  29. 29.
    Lim BW, Lu XM, Jiang MJ, Camargo PHC, Cho EC, Lee EP, Xia YN (2008) Nano Lett 8:4043CrossRefGoogle Scholar
  30. 30.
    Seo D, Park JC, Song H (2006) J Am Chem Soc 128:14863CrossRefGoogle Scholar
  31. 31.
    Zhang YW, Grass ME, Kuhn JN, Tao F, Habas SE, Huang WY, Yang PD, Somorjai GA (2008) J Am Chem Soc 130:5868CrossRefGoogle Scholar
  32. 32.
    Bratlie KM, Lee H, Komvopoulos K, Yang PD, Somorjai GA (2007) Nano Lett 7:3097CrossRefGoogle Scholar
  33. 33.
    Kim C, Lee H (2009) Catal Commun 10:1305CrossRefGoogle Scholar
  34. 34.
    Aliaga C, Park JY, Yamada Y, Lee HS, Tsung CK, Yang PD, Somorjai GA (2009) J Phys Chem C 113:6150CrossRefGoogle Scholar
  35. 35.
    Crespo-Quesada M, Andanson JM, Yarulin A, Lim B, Xia YN, Kiwi-Minsker L (2011) Langmuir 27:7909CrossRefGoogle Scholar
  36. 36.
    Gehl B, Fromsdorf A, Aleksandrovic V, Schmidt T, Pretorius A, Flege JI, Bernstorff S, Rosenauer A, Falta J, Weller H, Baumer M (2008) Adv Funct Mater 18:2398CrossRefGoogle Scholar
  37. 37.
    Inaba M, Ando M, Hatanaka A, Nomoto A, Matsuzawa K, Tasaka A, Kinumoto T, Iriyama Y, Ogumi Z (2006) Electrochim Acta 52:1632CrossRefGoogle Scholar
  38. 38.
    Joo SH, Park JY, Tsung CK, Yamada Y, Yang PD, Somorjai GA (2009) Nat Mater 8:126CrossRefGoogle Scholar
  39. 39.
    Kim C, Min M, Chang YW, Yoo KH, Lee H (2010) J Nanosci Nanotechnol 10:233CrossRefGoogle Scholar
  40. 40.
    Lee I, Morales R, Albiter MA, Zaera F (2008) Proc Natl Acad Sci USA 105:15241CrossRefGoogle Scholar
  41. 41.
    Solla-Gullón J, Montiel V, Aldaz A, Clavilier J (2000) J Electroanal Chem 491:69CrossRefGoogle Scholar
  42. 42.
    Borodko Y, Jones L, Lee H, Frei H, Somorjai GA (2009) Langmuir 25:6665CrossRefGoogle Scholar
  43. 43.
    San BH, Kim S, Moh SH, Lee H, Jung DY, Kim KK (2011) Angew Chem Int Ed. doi: 10.1002/anie.201101833
  44. 44.
    Sonström P, Arndt D, Wang X, Zielasek V, Bäumer M (2011) Angew Chem Int Ed 50:3888CrossRefGoogle Scholar
  45. 45.
    Perez J, Villullas HM, Gonzalez ER (1997) J Electroanal Chem 435:179CrossRefGoogle Scholar
  46. 46.
    Kim C, Oh JG, Kim YT, Kim H, Lee H (2010) Electrochem Commun 12:1596CrossRefGoogle Scholar
  47. 47.
    Baldauf M, Kolb DM (1996) J Phys Chem 100:11375CrossRefGoogle Scholar
  48. 48.
    Hu BJ, Ding KL, Wu TB, Zhou XS, Fan HL, Jiang T, Wang QA, Han BX (2010) Chem Commun 46:8552CrossRefGoogle Scholar
  49. 49.
    Lee H, Habas SE, Somorjai GA, Yang PD (2008) J Am Chem Soc 130:5406CrossRefGoogle Scholar
  50. 50.
    Llorca MJ, Feliu JM, Aldaz A, Clavilier J (1994) J Electroanal Chem 376:151CrossRefGoogle Scholar
  51. 51.
    Min M, Kim C, Yang YI, Yi J, Lee H (2011) Chem Commun 47:8079CrossRefGoogle Scholar
  52. 52.
    Min M, Kim C, Lee H (2010) J Mol Catal A 333:6CrossRefGoogle Scholar
  53. 53.
    Kim S, Kim C, Lee H (2010) Top Catal 53:686CrossRefGoogle Scholar
  54. 54.
    Yun HJ, Lee H, Joo JB, Kim W, Yi J (2009) J Phys Chem C 113:3050CrossRefGoogle Scholar
  55. 55.
    Pan CS, Zhang DS, Shi LY (2008) J Solid State Chem 181:1298CrossRefGoogle Scholar
  56. 56.
    Han J, Kim HJ, Yoon S, Lee H (2011) J Mol Catal A 335:82CrossRefGoogle Scholar
  57. 57.
    Xie XW, Li Y, Liu ZQ, Haruta M, Shen WJ (2009) Nature 458:746CrossRefGoogle Scholar
  58. 58.
    Xie XW, Shen WJ (2009) Nanoscale 1:50CrossRefGoogle Scholar
  59. 59.
    Hu LH, Peng Q, Li YD (2008) J Am Chem Soc 130:16136CrossRefGoogle Scholar
  60. 60.
    Bratlie KM, Kliewer CJ, Somorjai GA (2006) J Phys Chem B 110:17925CrossRefGoogle Scholar
  61. 61.
    Kim C, Lee H (2009) Catal Commun 11:7CrossRefGoogle Scholar
  62. 62.
    Lee I, Delbecq F, Morales R, Albiter MA, Zaera F (2009) Nat Mater 8:132CrossRefGoogle Scholar
  63. 63.
    Xu Y, Wang H, Yu Y, Tian L, Zhao W, Zhang B (2011) J Phys Chem C 115:15288CrossRefGoogle Scholar
  64. 64.
    Nolan M, Watson GW (2006) J Phys Chem B 110:16600CrossRefGoogle Scholar
  65. 65.
    Ma YY, Kuang Q, Jiang ZY, Xie ZX, Huang RB, Zheng LS (2008) Angew Chem Int Ed 47:8901CrossRefGoogle Scholar
  66. 66.
    Ming T, Feng W, Tang Q, Wang F, Sun LD, Wang JF, Yan CH (2009) J Am Chem Soc 131:16350CrossRefGoogle Scholar
  67. 67.
    Li J, Wang LH, Liu L, Guo L, Han XD, Zhang Z (2010) Chem Commun 46:5109CrossRefGoogle Scholar
  68. 68.
    Yu Y, Zhang QB, Lu XM, Lee JY (2010) J Phys Chem C 114:11119CrossRefGoogle Scholar
  69. 69.
    Zhang JA, Langille MR, Personick ML, Zhang K, Li SY, Mirkin CA (2010) J Am Chem Soc 132:14012CrossRefGoogle Scholar
  70. 70.
    Lu CL, Prasad KS, Wu HL, Ho JAA, Huang MH (2010) J Am Chem Soc 132:14546CrossRefGoogle Scholar
  71. 71.
    Yu Y, Zhang QB, Liu B, Lee JY (2010) J Am Chem Soc 132:18258CrossRefGoogle Scholar
  72. 72.
    Jin MS, Zhang H, Xie ZX, Xia YN (2011) Angew Chem Int Ed 50:7850CrossRefGoogle Scholar
  73. 73.
    Huang XQ, Zhao ZP, Fan JM, Tan YM, Zheng NF (2011) J Am Chem Soc 133:4718CrossRefGoogle Scholar
  74. 74.
    Yu T, Kim DY, Zhang H, Xia YN (2011) Angew Chem Int Ed 50:2773CrossRefGoogle Scholar
  75. 75.
    Tian N, Zhou ZY, Sun SG, Ding Y, Wang ZL (2007) Science 316:732CrossRefGoogle Scholar
  76. 76.
    Tian N, Zhou ZY, Yu NF, Wang LY, Sun SG (2010) J Am Chem Soc 132:7580CrossRefGoogle Scholar
  77. 77.
    Tian N, Zhou ZY, Sun SG (2009) Chem Commun 12:1502CrossRefGoogle Scholar
  78. 78.
    Han XG, Jin MS, Xie SF, Kuang Q, Jiang ZY, Jiang YQ, Xie ZX, Zheng LS (2009) Angew Chem Int Ed 48:9180CrossRefGoogle Scholar
  79. 79.
    Jiang HB, Cuan QA, Wen CZ, Xing J, Wu D, Gong XQ, Li CZ, Yang HG (2011) Angew Chem Int Ed 50:3764CrossRefGoogle Scholar
  80. 80.
    Leng M, Liu MZ, Zhang YB, Wang ZQ, Yu C, Yang XG, Zhang HJ, Wang C (2010) J Am Chem Soc 132:17084CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Hyunjoo Lee
    • 1
    Email author
  • Cheonghee Kim
    • 1
  • Sungeun Yang
    • 1
  • Joung Woo Han
    • 1
  • Jiyeon Kim
    • 1
  1. 1.Department of Chemical and Biomolecular EngineeringYonsei UniversitySeoulRepublic of Korea

Personalised recommendations