Catalysis Surveys from Asia

, Volume 15, Issue 2, pp 134–143 | Cite as

Molecular Design of Heme Proteins for Future Application

  • Hiroshi Nakajima
  • Shoji Osami
  • Yoshihito Watanabe
Article

Abstract

This review surveys our recent studies on artificial heme oxygenases, which consists of two topics. The first topic is an artificial peroxidase founded on a thermally tolerant protein, which shows high thermal stability in the catalytic reaction. In the second topic, we describe ‘Decoy system’ that has been developed to transform Cytochrome P450BSβ into a versatile oxygenase.

Keywords

Thermally tolerant protein Cytochrome c552 Cytochrome P450BSβ Decoy molecule 

References

  1. 1.
    Kaplan J, DeGrado WF (2004) Proc Natl Acad Sci USA 101:11566CrossRefGoogle Scholar
  2. 2.
    Robertson DE (1994) Nature 368:425CrossRefGoogle Scholar
  3. 3.
    Case MA, McLendon GL (2004) Acc Chem Res 37:754CrossRefGoogle Scholar
  4. 4.
    Cochran FV (2005) J Am Chem Soc 127:1346CrossRefGoogle Scholar
  5. 5.
    WatanabeY, Hayashi T (2005) Functionalization of myoglobin. In: Karlin KD (ed) Progress in inorganic chemistry, vol 54. John Wiley, NY, p. 449Google Scholar
  6. 6.
    Ghosh D, Pecoraro VL (2005) Curr Opin Chem Biol 9:97CrossRefGoogle Scholar
  7. 7.
    Koder RL (2009) Nature 458:305CrossRefGoogle Scholar
  8. 8.
    Sigman JA, Kwok BC, Lu Y (2000) J Am Chem Soc 122:8192CrossRefGoogle Scholar
  9. 9.
    Ozaki SI, Roach MP, Matsui T, Watanabe Y (2001) Acc Chem Res 34:818CrossRefGoogle Scholar
  10. 10.
    Ueno T, Abe S, Yokoi N, Watanabe Y (2007) Coord Chem Rev 251:2717CrossRefGoogle Scholar
  11. 11.
    Watanabe Y (2002) Curr Opin Chem Biol 6:208CrossRefGoogle Scholar
  12. 12.
    Watanabe Y, Fujii H (2000) Characterization of high-valent oxo-metalloporphyrins. In: Metal-oxo and metal-peroxo species in catalytic oxidations. Springer, NY, p 61Google Scholar
  13. 13.
    Watanabe Y, Nakajima H, Ueno T (2007) Acc Chem Res 40:554CrossRefGoogle Scholar
  14. 14.
    Nakajima H, Ramanathan K, Kawaba N, Watanabe Y (2010) Dalton Trans 39:3105CrossRefGoogle Scholar
  15. 15.
    Nakajima H, Ichikawa Y, Satake Y, Takatani N, Manna SK, Rajbongshi J, Mazumdar S, Watanabe Y (2008) ChemBioChem 9:2954CrossRefGoogle Scholar
  16. 16.
    Sono M, Roach MP, Coulter ED, Dawson JH (1996) Chem Rev 96:2841CrossRefGoogle Scholar
  17. 17.
    Ortiz de Montellano PR (1995) Cytochrome P450: structure, mechanism, and biochemistry, 3rd edn. Plenum Press, New YorkGoogle Scholar
  18. 18.
    Li YH, Beisson F (2009) Biochimie 91:685CrossRefGoogle Scholar
  19. 19.
    Bistolas N, Wollenberger U, Jung C, Scheller FW (2005) Biosens Bioelectron 20:2408CrossRefGoogle Scholar
  20. 20.
    Gillam EMJ (2008) Chem Res Toxicol 21:220CrossRefGoogle Scholar
  21. 21.
    Shoji O, Fujishiro T, Nakajima H, Kim M, Nagano S, Shiro Y, Watanabe Y (2007) Angew Chem Int Edn 46:3656CrossRefGoogle Scholar
  22. 22.
    Torres E, Hayen H, Niemeyer CM (2007) Biochem Biophys Res Commun 355:286CrossRefGoogle Scholar
  23. 23.
    Shiro Y, Matsunaga I, Lee DS (2003) J Inorg Biochem 96:228CrossRefGoogle Scholar
  24. 24.
    Lee D-S, Yamada A, Sugimoto H, Matsunaga I, Ogura H, Ichihara K, Adachi S-i, Park S-Y, Shiro Y (2003) J Biol Chem 278:9761CrossRefGoogle Scholar
  25. 25.
    Lee DS, Yamada A, Matsunaga I, Ichihara K, Adachi S, Park SY, Shiro Y (2002) Acta Crystallogr D-Biol Crystallogr 58:687CrossRefGoogle Scholar
  26. 26.
    Matsunaga I, Ueda A, Fujiwara N, Sumimoto T, Ichihara K (1999) Lipids 34:841CrossRefGoogle Scholar
  27. 27.
    Weng ZJ, Hendrickx M, Maesmans G, Tobback P (1991) J Food Sci 56:567CrossRefGoogle Scholar
  28. 28.
    Ayala M, Verdin J, Vazquez-Duhalt R (2007) Biocatal Biotransform 25:114CrossRefGoogle Scholar
  29. 29.
    Krieg R, Halbhuber KJ (2003) Cell Mol Biol 49:547Google Scholar
  30. 30.
    Veitch NC (2004) Phytochemistry 65:249CrossRefGoogle Scholar
  31. 31.
    Apitz A, van Pee KH (2001) Arch Microbiol 175:405CrossRefGoogle Scholar
  32. 32.
    Kengen SWM, Bikker FJ, Hagen WR, de Vos WM, van der Oost J (2001) Extremophiles 5:323CrossRefGoogle Scholar
  33. 33.
    McEldoon JP, Pokora AR, Dordick JS (1995) Enyme Microb Technol 17:359CrossRefGoogle Scholar
  34. 34.
    Gudelj M, Fruhwirth GO, Paar A, Lottspeich F, Robra KH, Cavaco-Paulo A, Gubitz GM (2001) Extremophiles 5:423CrossRefGoogle Scholar
  35. 35.
    Morawski B, Quan S, Arnold FH (2001) Biotechnol Bioeng 76:99CrossRefGoogle Scholar
  36. 36.
    Cherry JR, Lamsa MH, Schneider P, Vind J, Svendsen A, Jones A, Pedersen AH (1999) Nat Biotechnol 17:379CrossRefGoogle Scholar
  37. 37.
    Than ME, Hof P, Huber R, Bourenkov GP, Bartunik HD, Buse G, Soulimane T (1997) J Mol Biol 271:629CrossRefGoogle Scholar
  38. 38.
    Adachi S, Nagano S, Ishimori K, Watanabe Y, Morishima I, Egawa T, Kitagawa T, Makino R (1993) Biochemistry 32:241CrossRefGoogle Scholar
  39. 39.
    Markwalder HU, Neukom H (1976) Phytochemistry 15:836CrossRefGoogle Scholar
  40. 40.
    Diederix REM, Fittipaldi M, Worrall JAR, Huber M, Ubbink M, Canters GW (2003) Inorg Chem 42:7249CrossRefGoogle Scholar
  41. 41.
    Dunford HB (1999) In: Dunford HB (ed) Heme peroxidases. Wiley & Sons, Inc, NYGoogle Scholar
  42. 42.
    Chanda A, Ryabov AD, Mondal S, Alexandrova L, Ghosh A, Hangun-Balkir Y, Horwitz CP, Collins TJ (2006) Chem-Eur J 12:9336CrossRefGoogle Scholar
  43. 43.
    Li QS, Ogawa J, Schmid RD, Shimizu S (2005) Biosci Biotechnol Biochem 69:293CrossRefGoogle Scholar
  44. 44.
    Joo H, Lin Z, Arnold FH (1999) Nature 399:670CrossRefGoogle Scholar
  45. 45.
    Cirino PC, Arnold FH (2003) Angew Chem Int Edn 42:3299CrossRefGoogle Scholar
  46. 46.
    Hrycay EG, Gustafsson J-a, Ingelman-Sundberg M, Ernster L (1975) Biochem Biophys Res Commun 66:209CrossRefGoogle Scholar
  47. 47.
    Nordblom GD, White RE, Coon MJ (1976) Arch Biochem Biophys 175:524CrossRefGoogle Scholar
  48. 48.
    Matsunaga I, Ueda A, Sumimoto T, Ichihara K, Ayata M, Ogura H (2001) Arch Biochem Biophys 394:45CrossRefGoogle Scholar
  49. 49.
    DeLano WL (2002) The PyMOL molecular graphics system. On World Wide Web http://www.pymol.org
  50. 50.
    Kellner DG, Hung S-C, Weiss KE, Sligar SG (2002) J Biol Chem 277:9641CrossRefGoogle Scholar
  51. 51.
    Schlichting I, Berendzen J, Chu K, Stock AM, Maves SA, Benson DE, Sweet RM, Ringe D, Petsko GA, Sligar SG (2000) Science 287:1615CrossRefGoogle Scholar
  52. 52.
    Matsunaga I, Sumimoto T, Ueda A, Kusunose E, Ichihara K (2000) Lipids 35:365CrossRefGoogle Scholar
  53. 53.
    Sundaramoorthy M, Terner J, Poulos TL (1995) Structure 3:1367CrossRefGoogle Scholar
  54. 54.
    Sundaramoorthy M, Terner J, Poulos TL (1998) Chem Biol 5:461CrossRefGoogle Scholar
  55. 55.
    Matsui T, Ozaki S, Liong E, Phillips GN Jr, Watanabe Y (1999) J Biol Chem 274:2838CrossRefGoogle Scholar
  56. 56.
    Matsui T, Ozaki S, Watanabe Y (1999) J Am Chem Soc 121:9952CrossRefGoogle Scholar
  57. 57.
    Ozaki S, Matsui T, Roach MP, Watanabe Y (2000) Coord Chem Rev 198:39CrossRefGoogle Scholar
  58. 58.
    Ozaki S, Matsui T, Watanabe Y (1997) J Am Chem Soc 119:6666CrossRefGoogle Scholar
  59. 59.
    Chrastil J, Wilson JT (1975) Anal Biochem 63:202CrossRefGoogle Scholar
  60. 60.
    Goldschmidt S, Wessbecher H (1928) Berichte der deutschen chemischen Gesellschaft (A and B Series) 61:372CrossRefGoogle Scholar
  61. 61.
    Russig F (1900) J Praktische Chemie 62:30CrossRefGoogle Scholar
  62. 62.
    Kleeberg U, Klinger W (1982) J Pharmacol Sci 8:19Google Scholar
  63. 63.
    Burke MD, Thompson S, Weaver RJ, Wolf CR, Mayers RT (1994) Biochem Pharmacol 48:923CrossRefGoogle Scholar
  64. 64.
    Li AP, Kaminski DL, Rasmussen A (1995) Toxicology 104:1CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Hiroshi Nakajima
    • 2
  • Shoji Osami
    • 2
  • Yoshihito Watanabe
    • 1
  1. 1.Research Center for Materials ScienceNagoya UniversityNagoyaJapan
  2. 2.Department of Chemistry, Graduate School of ScienceNagoya UniversityNagoyaJapan

Personalised recommendations