Advertisement

Catalysis Surveys from Asia

, Volume 14, Issue 3–4, pp 168–175 | Cite as

Development of RuO2/Rutile-TiO2 Catalyst for Industrial HCl Oxidation Process

  • Kohei Seki
Article

Abstract

Sumitomo Chemical has developed a low energy consuming and green process for the catalytic oxidation of HCl to Cl2, especially when compared with the electrolysis process. The RuO2/rutile-TiO2 catalyst has high catalytic activity and thermal stability due to ultra-fine RuO2 crystallites that cover the surface of the TiO2 primary particles with strong interaction. In addition, the silica modified RuO2/rutile-TiO2 catalyst shows higher thermal stability by preventing the RuO2 sintering due to using dispersed SiO2 particles. With these catalysts, high reaction rates required for industrial applications are achieved, even at low temperatures.

Keywords

RuO2 catalyst Chlorine recycle Hydrogen chloride oxidation Fixed-bed reactor EXAFS RuO2/TiO2 Rutile TiO2 

References

  1. 1.
    Motupally S, Mah DT, Freire FJ, Weidner JW (1998) Electrochem Soc Interface 7(3):32Google Scholar
  2. 2.
    Deacon H (1875) US patent 165,802Google Scholar
  3. 3.
    Shell Oil Company (1965) US patent 3210158Google Scholar
  4. 4.
    Kiyoura T, Yoshida K, Nishida H (1991) Shokubai 33:15Google Scholar
  5. 5.
    Mortensen M, Minet RG, Tsotsis TT, Benson SW (1999) Chem Eng Sci 54:2131CrossRefGoogle Scholar
  6. 6.
    Iwanaga K, Seki K, Hibi T, Issoh K, Suzuta T, Nakada M, Mori Y, Abe T (2004) Sumitomo Kagaku 2004-I:4Google Scholar
  7. 7.
    Crihan D, Knapp M, Zweidinger S, Lundgren E, Weststrate CJ, Andersen JN, Seitsonen AP, Over H (2008) Angew Chem Int Ed Engl 47:2131CrossRefGoogle Scholar
  8. 8.
    López N, Gómez-Segura J, Marín RP, Pérez-Ramírez J (2008) J Catal 255:29CrossRefGoogle Scholar
  9. 9.
    Shell International Research Maatschappij (1966) GB patent 1,046,313Google Scholar
  10. 10.
    Sumitomo Chemical Company Limited (2005) US patent 6,852,667Google Scholar
  11. 11.
    de Graaf J, van Dillen AJ, de Jong KP, Koningsberger DC (2001) J Catal 203:307CrossRefGoogle Scholar
  12. 12.
    Clausen BS, Topsøe H, Hansen LB, Stoltze P, Nørskov JK (1994) Catal Today 21:49CrossRefGoogle Scholar
  13. 13.
    Sumitomo Chemical Company Limited (2008) JP patent 4192354Google Scholar
  14. 14.
    Sumitomo Chemical Company Limited (2005) US patent 6,977,066Google Scholar
  15. 15.
    Sumitomo Chemical Company Limited (2008) JP patent 4182608Google Scholar
  16. 16.
    Ozawa M, Kimura M (1990) J Mater Sci Lett 9(3):291CrossRefGoogle Scholar
  17. 17.
    Hayata T, Furuya T, Yamanaka S, Koezuka J (1989) Shokubai 31(2):116Google Scholar
  18. 18.
    Idemitsu Kosan (2002) JP patent 3365660Google Scholar
  19. 19.
    Schmal M, Guimaraes AL, Dieguez LC (2001) In: 222nd ACS national meeting, Chicago, IL, US, August 26–30Google Scholar
  20. 20.
    Sumitomo Chemical Company Limited (2008) JP patent 4069619Google Scholar
  21. 21.
    Sumitomo Chemical Company Limited (2008) JP patent 2008155199Google Scholar
  22. 22.
    Ruckenstein E, Pulvermacher B (1973) J Catal 29:224CrossRefGoogle Scholar
  23. 23.
    Flynn PC, Wanke SE (1974) J Catal 34:390CrossRefGoogle Scholar
  24. 24.
    Bartholomew CH (2001) Appl Catal A Gen 212:17CrossRefGoogle Scholar
  25. 25.
    Moorhouse J (2001) In: Modern chlor-alkali technology, vol 8. Royal Soc. Chem., Cambridge, p 49Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Basic Chemicals Research LaboratorySumitomo Chemical Co., Ltd.NiihamaJapan

Personalised recommendations