Catalysis Surveys from Asia

, Volume 12, Issue 3, pp 170–183 | Cite as

Fischer–Tropsch Synthesis by Carbon Dioxide Hydrogenation on Fe-Based Catalysts

  • P. S. Sai Prasad
  • Jong Wook Bae
  • Ki-Won JunEmail author
  • Kyu-Wan Lee


Impregnated and co-precipitated, promoted and unpromoted, bulk and supported iron catalysts were prepared, characterized, and subjected to hydrogenation of CO2 at various pressures (1–2 MPa) and temperatures (573–673 K). Potassium, as an important promoter, enhanced the CO2 uptake and selectivity towards olefins and long-chain hydrocarbons. Al2O3, when added as a structural promoter during co-precipitation, increased CO2 conversion as well as selectivity to C2+ hydrocarbons. Among V, Cr, Mn and Zn promoters, Zn offered the highest selectivity to C2–C4 alkenes. The different episodes involved in the transformation of the catalyst before it reached steady-state were identified, on the co-precipitated catalyst. Using a biomass derived syngas (CO/CO2/H2), CO alone took part in hydrogenation. When enriched with H2, CO2 was also converted to hydrocarbons. The deactivation of impregnated Fe–K/Al2O3 catalyst was found to be due to carbon deposition, whereas that for the precipitated catalyst was due to increase in crystallinity of iron species. The suitability of SiO2, TiO2, Al2O3, HY and ion exchanged NaY as supports was examined for obtaining high activity and selectivity towards light olefins and C2+ hydrocarbons and found Al2O3 to be the best support. A comparative study with Co catalysts revealed the advantages of Fe catalysts for hydrocarbon production by F–T synthesis.


Iron catalysts F–T synthesis Carbon dioxide hydrogenation Hydrocarbons 



The authors would like to acknowledge funding from the Korea Ministry of Commerce, Industry and Energy (MOCIE) through “Project of next-generation novel technology development“ of ITEP. P.S. Sai Prasad thanks Korea Federation of Science & Technology (KOFST) for the award of the visiting research fellowship under Brain Pool program and the Director, IICT, Hyderabad, for sanctioning the sabbatical leave. K.W. Jun thanks all the co-authors of his papers cited in this review.


  1. 1.
    Edwards JH (1995) Catal Today 23:59CrossRefGoogle Scholar
  2. 2.
    Fujimoto K, Shikada T (1987) Appl Catal 31:13CrossRefGoogle Scholar
  3. 3.
    Lee JF, Chern WS, Lee MD, Dong TY (1992) Can J Chem Eng 70:511CrossRefGoogle Scholar
  4. 4.
    Fujiwara M, Kieffer R, Ando H, Souma Y (1995) Appl Catal A 121:113Google Scholar
  5. 5.
    Fiato RA, Iglesia E, Rice GW, Soled SL (1998) Stud Surf Sci Catal 107:339CrossRefGoogle Scholar
  6. 6.
    Omae I (2006) Catal Today 115:33CrossRefGoogle Scholar
  7. 7.
    Newsome DS (1980) Catal Rev Sci Eng 21:275CrossRefGoogle Scholar
  8. 8.
    Dry ME (1996) Appl Catal A 138:319CrossRefGoogle Scholar
  9. 9.
    Jin Y, Datye A (2000) J Catal 196:8CrossRefGoogle Scholar
  10. 10.
    Miller D, Moskovits M (1989) J Am Chem Soc 111:9250CrossRefGoogle Scholar
  11. 11.
    US Patent 3,130,009, 1970Google Scholar
  12. 12.
    Yan SR, Jun KW, Hong JS, Choi MJ, Lee KW (2000) Appl Catal A 194–195:63Google Scholar
  13. 13.
    Choi PH, Jun KW, Lee SJ, Choi MJ, Lee KW (1996) Catal Lett 40:115CrossRefGoogle Scholar
  14. 14.
    Jun KW, Lee SJ, Kim H, Choi MJ, Lee KW (1998) Stud Surf Sci Catal 114:345CrossRefGoogle Scholar
  15. 15.
    Nam SS, Lee SJ, Kim H, Jun KW, Choi MJ, Lee KW (1997) Energy Convers Manage 38(Suppl):S397CrossRefGoogle Scholar
  16. 16.
    Riedel T, Schulz H, Schaub G, Jun KW, Hwang JS, Lee KW (2003) Topics Catal 26:41CrossRefGoogle Scholar
  17. 17.
    Storch HH, Golumbic N, Anderson RB (1951) The Fischer–Tropsch and related syntheses. John Wiley & Sons, New YorkGoogle Scholar
  18. 18.
    Schulz H, Claeys M (1999) Appl Catal A 186:71CrossRefGoogle Scholar
  19. 19.
    Satterfield CN, Hanlon RT, Tung SE, Zou Z, Papaefthymiou GC (1986) Ind Eng Chem Prod Res Dev 25:407CrossRefGoogle Scholar
  20. 20.
    Schulz H, Riedel T, Schaub G (2005) Topics Catal 32:117CrossRefGoogle Scholar
  21. 21.
    Raupp GB, Delgass WN (1979) J Catal 58:361CrossRefGoogle Scholar
  22. 22.
    Riedel T, Claeys M, Schulz H, Schaub G, Nam SS, Jun KW, Choi MJ, Kishan G, Lee KW (1999) Appl Catal A 186:201CrossRefGoogle Scholar
  23. 23.
    Falconer JL, Zagli AE (1980) J Catal 62:280CrossRefGoogle Scholar
  24. 24.
    Dictor RA, Bell AT (1986) J Catal 97:121CrossRefGoogle Scholar
  25. 25.
    Bonzel HP, Krebs HJ (1982) Surf Sci 117:639CrossRefGoogle Scholar
  26. 26.
    Gao X, Shen J, Hsia Y, Chen Y (1993) J Chem Soc, Faraday Trans 89:1079CrossRefGoogle Scholar
  27. 27.
    Lee MD, Lee JF, Chang CS (1989) Bull Chem Soc Jpn 62:2756CrossRefGoogle Scholar
  28. 28.
    Anderson RB (1984) The Fischer–Tropsch synthesis. Academic Press, LondonGoogle Scholar
  29. 29.
    Jun KW, Roh HS, Kim KS, Ryu JS, Lee KW (2004) Appl Catal A 259:221CrossRefGoogle Scholar
  30. 30.
    Dry ME (1981) In: Anderson JR, Boudart M (eds) Catalysis science and technology, vol 1. Springer-Verlag, Berlin, p 159Google Scholar
  31. 31.
    Hwang JS, Jun KW, Lee KW (2001) Appl Catal A 208:217CrossRefGoogle Scholar
  32. 32.
    Shultz JF, Hall WK, Dubs TA, Anderson RB (1956) J Am Chem Soc 78:282CrossRefGoogle Scholar
  33. 33.
    Niemantsverdriet J, van der Kraan A, van Dijk W, van der Baan H (1980) J Phys Chem 84:3363CrossRefGoogle Scholar
  34. 34.
    Hong JS, Hwang JS, Jun KW, Sur JC, Lee KW (2001) Appl Catal A 218:53CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • P. S. Sai Prasad
    • 1
  • Jong Wook Bae
    • 1
  • Ki-Won Jun
    • 1
    Email author
  • Kyu-Wan Lee
    • 1
  1. 1.Alternative Chemicals/Fuel Research CenterKorea Research Institute of Chemical Technology (KRICT)DaejeonSouth Korea

Personalised recommendations