Catalysis Surveys from Asia

, Volume 11, Issue 4, pp 145–157 | Cite as

Development of Cocatalysts for Photocatalytic Overall Water Splitting on (Ga1−x Zn x )(N1−x O x ) Solid Solution

Article

Abstract

The development of cocatalysts promoting overall water splitting on (Ga1−x Zn x )(N1−x O x ) solid solution photocatalyst is presented. The (Ga1−x Zn x )(N1−x O x ) is a stable visible-light-driven photocatalyst for stoichiometric water splitting upon loading with a suitable nanoparticulate cocatalyst. Loading with a combination of Cr and Rh oxides, Rh2−y Cr y O3, is demonstrated to raise the quantum efficiency of (Ga1−x Zn x )(N1−x O x ) for overall water splitting to 2.5% at 420–440 nm. This represents a 10-fold increase in efficiency over the highest efficiency previously obtained using nanoparticulate RuO2 as a cocatalyst. In addition to the composition, the dispersion and size of cocatalyst nanoparticles are identified as important factors affecting the degree of enhancement for stoichiometric water splitting.

Keywords

Cocatalyst Heterogeneous photocatalysis Hydrogen Overall water splitting Photocatalyst Solar energy conversion 

Notes

Acknowledgements

The research described herein was supported by the Core Research for Evolutional Science and Technology (CREST) and Solution Oriented Research for Science and Technology (SORST) programs of the Japan Science and Technology Corporation (JST). Acknowledgement is also extended to the 21st Century Center of Excellence (COE) and the Research and Development in a New Interdisciplinary Field Based on Nanotechnology and Materials Science programs of the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.

References

  1. 1.
    Khaselev O, Turner JA (1998) Science 280:425CrossRefGoogle Scholar
  2. 2.
    Grätzel M (2001) Nature 414:338CrossRefGoogle Scholar
  3. 3.
    Cortright RD, Davda RR, Dumeslc JA (2002) Nature 418:964CrossRefGoogle Scholar
  4. 4.
    Kamat PV (2007) J Phys Chem C 111:2834CrossRefGoogle Scholar
  5. 5.
    Yoshimura J, Ebina Y, Kondo J, Domen K, Tanaka A (1993) J Phys Chem 97:1970CrossRefGoogle Scholar
  6. 6.
    Kudo A, Mikami I (1998) Chem Lett 27:1027CrossRefGoogle Scholar
  7. 7.
    Kudo A, Ueda K, Kato H, Mikami I (1998) Catal Lett 53:229CrossRefGoogle Scholar
  8. 8.
    Kudo A, Omori K, Kato H (1999) J Am Chem Soc 121:11459CrossRefGoogle Scholar
  9. 9.
    Sayama K, Mukasa K, Abe R, Abe Y, Arakawa H (2001) Chem Commun 2416Google Scholar
  10. 10.
    Hitoki G, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K (2002) Chem Commun 1698Google Scholar
  11. 11.
    Hitoki G, Ishikawa A, Takata T, Kondo JN, Hara M, Domen K (2002) Chem Lett 31:736CrossRefGoogle Scholar
  12. 12.
    Hitoki G, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K (2002) Electrochemistry 70:463Google Scholar
  13. 13.
    Kasahara A, Nukumizu K, Hitoki G, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K (2002) J Phys Chem A 106:6750CrossRefGoogle Scholar
  14. 14.
    Ishikawa A, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K (2002) J Am Chem Soc 124:13547CrossRefGoogle Scholar
  15. 15.
    Kato H, Kudo A (2002) J Phys Chem B 106:5029CrossRefGoogle Scholar
  16. 16.
    Kato H, Kobayashi H, Kudo A (2002) J Phys Chem B 106:12441CrossRefGoogle Scholar
  17. 17.
    Kasahara A, Nukumizu K, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K (2003) J Phys Chem B 107:791CrossRefGoogle Scholar
  18. 18.
    Nukumizu K, Nunoshige J, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K (2003) Chem Lett 32:196CrossRefGoogle Scholar
  19. 19.
    Hara M, Nunoshige J, Takata T, Kondo JN, Domen K (2003) Chem Commun 3000Google Scholar
  20. 20.
    Ishikawa A, Yamada Y, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K (2003) Chem Mater 15:4442CrossRefGoogle Scholar
  21. 21.
    Yamasita D, Takata T, Hara M, Kondo JN, Domen K (2004) Solid State Ionics 172:591CrossRefGoogle Scholar
  22. 22.
    Ishikawa A, Takata T, Matsumura T, Kondo JN, Hara M, Kobayashi H, Domen K (2004) J Phys Chem B 108:2637CrossRefGoogle Scholar
  23. 23.
    Hosogi Y, Tanabe K, Kato H, Kobayashi H, Kudo A (2004) Chem Lett 33:28CrossRefGoogle Scholar
  24. 24.
    Konta R, Ishii T, Kato H, Kudo A (2004) J Phys Chem B 108:8992CrossRefGoogle Scholar
  25. 25.
    Kim HG, Hwang DW, Lee JS (2004) J Am Chem Soc 126:8912CrossRefGoogle Scholar
  26. 26.
    Kato H, Hori M, Konta R, Shimodaira Y, Kudo A (2004) Chem Lett 33:1348CrossRefGoogle Scholar
  27. 27.
    Hwang DW, Kim HG, Lee JS, Kim J, Li W, Oh SH (2005) J Phys Chem B 109:2093CrossRefGoogle Scholar
  28. 28.
    Kim HG, Borse PH, Choi W, Lee JS (2005) Angew Chem Int Ed 44:4585CrossRefGoogle Scholar
  29. 29.
    Abe R, Sayama K, Sugihara H (2005) J Phys Chem B 109:16052CrossRefGoogle Scholar
  30. 30.
    Abe R, Takata T, Sugihara H, Domen K (2005) Chem Commun 3829Google Scholar
  31. 31.
    Lee Y, Nukumizu K, Watanabe T, Takata T, Hara M, Yoshimura M, Domen K (2006) Chem Lett 35:352CrossRefGoogle Scholar
  32. 32.
    Maeda K, Takata T, Hara M, Saito N, Inoue Y, Kobayashi H, Domen K (2005) J Am Chem Soc 127:8286CrossRefGoogle Scholar
  33. 33.
    Maeda K, Teramura K, Takata T, Hara M, Saito N, Toda K, Inoue Y, Kobayashi H, Domen K (2005) J Phys Chem B 109:20504CrossRefGoogle Scholar
  34. 34.
    Yashima M, Maeda K, Teramura K, Takata T, Domen K (2005) Chem Phys Lett 416:225CrossRefGoogle Scholar
  35. 35.
    Yashima M, Maeda K, Teramura K, Takata T, Domen K (2006) Mater Trans 47:295CrossRefGoogle Scholar
  36. 36.
    Nakamura S, Mukai T, Senoh M (1994) Appl Phys Lett 64:1687CrossRefGoogle Scholar
  37. 37.
    Nakamura S (1998) Science 281:956CrossRefGoogle Scholar
  38. 38.
    Tsukazaki A, Ohtomo A, Onuma T, Ohtani M, Makino T, Sumiya M, Ohtani K, Chichibu SF, Fuke S, Segawa Y, Ohno H, Koinuma H, Kawasaki M (2005) Nat Mater 4:42CrossRefGoogle Scholar
  39. 39.
    Domen K, Naito S, Soma M, Onishi T, Tamaru K (1980) J Chem Soc Chem Commun 543Google Scholar
  40. 40.
    Domen K, Kudo A, Onishi T (1986) J Catal 102:92CrossRefGoogle Scholar
  41. 41.
    Domen K, Kudo A, Onishi T, Kosugi N, Kuroda H (1986) J Phys Chem 90:292CrossRefGoogle Scholar
  42. 42.
    Kudo A, Nakagawa S, Kato H (1999) Chem Lett 28:1197CrossRefGoogle Scholar
  43. 43.
    Kato H, Kudo A (1999) Catal Lett 58:153CrossRefGoogle Scholar
  44. 44.
    Inoue Y, Kubokawa T, Sato K (1990) J Chem Soc Chem Commun 1298Google Scholar
  45. 45.
    Inoue Y, Asai Y, Sato K (1994) J Chem Soc, Faraday Trans 90:797CrossRefGoogle Scholar
  46. 46.
    Ogura S, Kohno M, Sato K, Inoue Y (1998) J Mater Chem 8:2335CrossRefGoogle Scholar
  47. 47.
    Sato J, Saito N, Nishiyama H, Inoue Y (2001) J Phys Chem B 105:6061CrossRefGoogle Scholar
  48. 48.
    Thaminimulla CTK, Takata T, Hara M, Kondo JN, Domen K (2000) J Catal 196:362CrossRefGoogle Scholar
  49. 49.
    Horváth IT (2003) Encyclopedia of catalysis, vol 5. John Wiley & Sons, Hoboken, New JerserGoogle Scholar
  50. 50.
    Teramura K, Maeda K, Saito T, Takata T, Saito N, Inoue Y, Domen K (2005) J Phys Chem B 109:21915CrossRefGoogle Scholar
  51. 51.
    Maeda K, Teramura K, Lu D, Takata T, Saito N, Inoue Y, Domen K (2006) Nature 440:295CrossRefGoogle Scholar
  52. 52.
    Maeda K, Teramura K, Saito N, Inoue Y, Domen K (2006) J Catal 243:303CrossRefGoogle Scholar
  53. 53.
    Maeda K, Teramura K, Masuda H, Takata T, Saito N, Inoue Y, Domen K (2006) J Phys Chem B 110:13107CrossRefGoogle Scholar
  54. 54.
    Maeda K, Teramura K, Lu D, Takata T, Saito N, Inoue Y, Domen K (2006) J Phys Chem B 110:13753CrossRefGoogle Scholar
  55. 55.
    Lide DR (2002) Handbook of chemistry and physics, 83rd edn. CRC Press, Boca Raton, FLGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Kazuhiko Maeda
    • 1
  • Kentaro Teramura
    • 1
    • 2
  • Kazunari Domen
    • 1
  1. 1.Department of Chemical System EngineeringThe University of TokyoTokyoJapan
  2. 2.Pioneering Research Unit for Next GenerationKyoto UniversityKyotoJapan

Personalised recommendations