Advertisement

Catalysis Surveys from Asia

, Volume 10, Issue 3–4, pp 161–171 | Cite as

Porous microfibers and microhoneycombs synthesized by ice templating

  • Shin R. Mukai
  • Hirotomo Nishihara
  • Hajime Tamon
Article

 

Recently we introduced the “ice templating” method, a new method which allows the synthesis of nanoporous materials with unique morphology, such as microfibers and microhoneycombs. In this method, materials are synthesized by freezing their parent hydrosols or hydrogels unidirectionally. Ice crystals which grow within the precursor during freezing act as the template. Therefore, the template can be easily removed through simple thawing and drying, which is a unique and beneficial feature of this method. This paper will first describe the outline of this new method and next, the details about methods to control the dimensions of the materials obtained through it. Comments about the range of applicability of this method will also be provided.

Keywords

porous materials sol–gel freeze gelation unidirectional freezing microfiber microhoneycomb. 

References

  1. 1.
    Studart A.R., Gonzenbach U.T., Tervoot E., Gauckler L.J. (2006) J. Am. Ceram. Soc. 89:1771CrossRefGoogle Scholar
  2. 2.
    Nakanishi K. (1997) J. Porous Mater. 4:67CrossRefGoogle Scholar
  3. 3.
    Nakanishi K., Soga N. (1991) J. Am. Ceram. Soc. 74:2518CrossRefGoogle Scholar
  4. 4.
    Minakuchi H., Nakanishi K., Soga N., Ishizuka N., Tanaka N. (1996) Anal. Chem. 68:3498CrossRefGoogle Scholar
  5. 5.
    Smatt J.H., Schunk S., Linden M. (2003) Chem. Mater. 15:2354CrossRefGoogle Scholar
  6. 6.
    Nakamura N., Takahashi R., Sato S., Sodesawa T., Yoshida S. (2000) Phys. Chem. Chem. Phys. 2:4983CrossRefGoogle Scholar
  7. 7.
    Velev O.D., Jede T.A., Lobo R.F., Lenhoff A.M. (1997) Nature 389:447CrossRefGoogle Scholar
  8. 8.
    Holland B.T., Blanford C.F., Stein A. (1998) Science 281:538CrossRefGoogle Scholar
  9. 9.
    Velev O.D., Kaler E.W. (2000) Adv. Mater. 12:531CrossRefGoogle Scholar
  10. 10.
    Kulinowski K.M., Jiang P., Vaswani H., Colvin V.L. (2000) Adv. Mater. 12:833CrossRefGoogle Scholar
  11. 11.
    Imhof A., Pine D.J. (1997) Nature 389:948CrossRefGoogle Scholar
  12. 12.
    Manoharan V.N., Imhof A., Thorne J.D., Pine D.J. (2001) Adv. Mater. 13:447CrossRefGoogle Scholar
  13. 13.
    Laurie J., Bagnall C.M., Harris B., Jones R.W., Cooke R.G., R.S. Russell-Floyd, Wang T.H., Hammett F.W. (1992) J. Non-Cryst. Solids 147–148:320CrossRefGoogle Scholar
  14. 14.
    Statham M.J., Hammett F., Harris B., Cooke R.G., Jordan R.M., Roche A. (1998) J. Sol-Gel Sci. Technol. 13:171CrossRefGoogle Scholar
  15. 15.
    Koch D., Andresen L., Schmedders T., Grathwohl G. (2003) J. Sol-Gel Sci. Technol. 26:149CrossRefGoogle Scholar
  16. 16.
    Mahler W., Bechtold M.F. (1980) Nature 285:27CrossRefGoogle Scholar
  17. 17.
    Kokubo T., Teranishi Y., Maki T. (1983) J. Non-Cryst. Solids 56:411CrossRefGoogle Scholar
  18. 18.
    Maki T., Sakka S. (1986) J. Mat. Sci. Lett. 5:28CrossRefGoogle Scholar
  19. 19.
    Mukai S.R., Nishihara H., Tamon H. (2003) Micropor. Mesopor. Mater. 63:43CrossRefGoogle Scholar
  20. 20.
    S.R. Mukai, H. Nishinara and H. Tamon, Chem. Commun. (2004) 874Google Scholar
  21. 21.
    Nishihara H., Mukai S.R., Tamon H. (2004) Carbon 42:899CrossRefGoogle Scholar
  22. 22.
    Mukai S.R., Nishihara H., Shichi S., Tamon H. (2004) Chem. Mater. 16:4987Google Scholar
  23. 23.
    Nishinara H., Mukai S.R., Yamashita D., Tamon H. (2005) Chem. Mater. 17:683CrossRefGoogle Scholar
  24. 24.
    Mukai S.R., Nishihara H., Yoshida T., Taniguchi K., Tamon H. (2005) Carbon 43:1563CrossRefGoogle Scholar
  25. 25.
    Nishihara H., Mukai S.R., Fujii Y., Tago T., Masuda T., Tamon H. (2006) J. Mater. Chem. 16:3231CrossRefGoogle Scholar
  26. 26.
    Flemings M.C. (1974) Solidification Processing. McGraw-Hill, New YorkGoogle Scholar
  27. 27.
    Nakanishi K., Takahashi R., Nagakane T., Kitayama K., Koheiya N., Shikata H., Soga N. (2000) J. Sol–Gel Sci. Technol. 17:191CrossRefGoogle Scholar
  28. 28.
    Pekala R.W. (1989) J. Mater. Sci. 24:3221CrossRefGoogle Scholar
  29. 29.
    Pekala R.W., Alviso C.T., Kong R.F., Hulsey S.S. (1992) J. Non-Cryst. Solids 145:90CrossRefGoogle Scholar
  30. 30.
    Hernandez C., Pierre A.C. (2000) Langmuir 16:530CrossRefGoogle Scholar
  31. 31.
    Chalmers B. (1964) Principles of Solidification. Wiley, New YorkGoogle Scholar
  32. 32.
    Masuda T., Fujikata Y., Mukai S.R., Hashimoto K. (1997) Appl. Catal. A 165:57CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Shin R. Mukai
    • 1
  • Hirotomo Nishihara
    • 2
  • Hajime Tamon
    • 3
  1. 1.Graduate School of EngineeringHokkaido UniversitySapporoJapan
  2. 2.Institute of Multidisciplinary Research for Advanced MaterialsTohoku UniversitySendaiJapan
  3. 3.Graduate School of EngineeringKyoto UniversityKyotoJapan

Personalised recommendations