Skip to main content

Advertisement

Log in

DBU-Based Ionic Liquid Grafted SBA-15 Dual-Functional Catalyst for the Cycloaddition Reaction of CO2 and Epoxide

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The development of novel catalysts for the synthesis of cyclic carbonates under mild conditions remains a challenge. Herein, we designed the strategy of immobilizing DBU-based ionic liquid on mesoporous SBA-15 (DBU@SBA-15), due to the cooperative effect between silanol and bromide anion, DBU@SBA-15 exhibits high CO2 catalytic performance under solvent-free and metal-free and additive-free conditions. Typically, the yield of chloropropene carbonate was close to 100% from the reaction of epichlorohydrin and CO2 within 12 h at 80 °C and 2 MPa. Notably, the product yield could achieve 64.8% even at ambient pressure, and DBU@SBA-15 was recycled four times without significant loss of catalytic activity. Additionally, DFT studies revealed that the nucleophilic effect and the strong hydrogen bond together promote the ring-opening of epoxides, which was consistent with the possible reaction mechanism proposed based on experiments.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Liang L, Liu C, Jiang F, Chen Q, Zhang L, Xue H, Jiang HL, Qian J, Yuan D, Hong M (2017) Carbon dioxide capture and conversion by an acid-base resistant metal-organic framework. Nat Commun 8:1–10. https://doi.org/10.1038/s41467-017-01166-3

    Article  CAS  Google Scholar 

  2. Xue W, Zhang J, Jia D, Che Y, Lu T, Deng X, Li X, Tian Y, Wei J (2021) Aerosol-induced direct radiative forcing effects on terrestrial ecosystem arbon fluxes over China. Environ Res 200:111464. https://doi.org/10.1016/j.envres.2021.111464

    Article  CAS  PubMed  Google Scholar 

  3. Wang X, Yang L, Chen Y, Yang C, Lan J, Sun J (2020) Metal-free triazine-incorporated organo-silica framework catalyst for the cycloaddition of CO2 to epoxide under solvent-free conditions. Ind Eng Chem Res 59:21018–21027. https://doi.org/10.1021/acs.iecr.0c04466

    Article  CAS  Google Scholar 

  4. Zhang X, Fevre M, Jones GO, Waymouth RM (2018) Catalysis as an enabling science for sustainable polymers. Chem Rev 118:839–885. https://doi.org/10.1021/acs.chemrev.7b00329

    Article  CAS  PubMed  Google Scholar 

  5. Yadav N, Seidi F, Crespy D, D’Elia V (2019) Polymers based on cyclic carbonates as trait d’union between polymer chemistry and sustainable CO2 utilization. Chem Sus Chem 12:724–754. https://doi.org/10.1002/cssc.201802770

    Article  CAS  Google Scholar 

  6. Dabral S, Schaub T (2019) The use of carbon dioxide (CO2) as a building block in organic synthesis from an industrial perspective. Adv Synth Catal 361:223–246. https://doi.org/10.1002/adsc.201801215

    Article  CAS  Google Scholar 

  7. Assen N, Jung J, Bardow A (2013) Life-cycle assessment of carbon dioxide capture and utilization: avoiding the pitfalls Energ. Environ Sci 6:2721–2734. https://doi.org/10.1039/C3EE41151F

    Article  Google Scholar 

  8. Chatelet B, Joucla L, Dutasta JP, Martinez A, Szeto KC, Dufaud V (2013) Azaphosphatranes as structurally tunable organocatalysts for carbonate synthesis from CO2 and epoxides. J Am Chem Soc 135:5348–5351. https://doi.org/10.1021/ja402053d

    Article  CAS  PubMed  Google Scholar 

  9. Yin SF, Shimada S (2009) Synthesis and structure of bismuth compounds bearing a sulfur-bridged bis(phenolato) ligand and their catalytic application to the solvent-free synthesis of propylene carbonate from CO2 and propylene oxide. Chem Commun 9:1136–1138. https://doi.org/10.1039/B819911F

    Article  Google Scholar 

  10. Whiteoak CJ, Kielland N, Laserna V, Escudero-Adan EC, Martin E, Kleij AWA (2013) Powerful aluminum catalyst for the synthesis of highly functional organic carbonates. J Am Chem Soc 135:1228–1231. https://doi.org/10.1021/ja311053h

    Article  CAS  PubMed  Google Scholar 

  11. Yang ZZ, He LN, Zhao YN, Li B, Yu B (2011) CO2 capture and activation by superbase/polyethylene glycol and its subsequent conversion. Energ Environ Sci 4:3971–3975. https://doi.org/10.1039/c1ee02156g

    Article  CAS  Google Scholar 

  12. Sun J, Cheng W, Yang Z, Wang J, Xu T, Xin J, Zhang S (2014) Superbase/cellulose: an environmentally benign catalyst for chemical fixation of carbon dioxide into cyclic carbonates. Green Chem 16:3071–3078. https://doi.org/10.1039/C3GC41850B

    Article  CAS  Google Scholar 

  13. Sun J, Zhang S, Cheng W, Ren J (2008) Hydroxyl-functionalized ionic liquid: a novel efficient catalyst for chemical fixation of CO2 to cyclic carbonate. Tetrahedron Lett 49:3588–3591. https://doi.org/10.1002/chin.200834116

    Article  CAS  Google Scholar 

  14. Hu J, Ma J, Liu H, Qian Q, Xie CB (2018) Dual-ionic liquid system: an efficient catalyst for chemical fixation of CO2 to cyclic carbonates under mild conditions. Green Chem 20:2990–2994. https://doi.org/10.1039/C8GC01129J

    Article  CAS  Google Scholar 

  15. Meng X, Ju Z, Zhang S, Liang X, Solms N, Zhang X (2019) Efficient transformation of CO2 to cyclic carbonates using bifunctional protic ionic liquids under mild conditions. Green Chem 21:3456–3463. https://doi.org/10.1039/C9GC01165J

    Article  CAS  Google Scholar 

  16. Yang Z, He L, Miao C, Chanfreau S (2010) Lewis basic ionic liquids-catalyzed conversion of carbon dioxide to cyclic carbonates. Adv Synth Catal 352:2233–2240. https://doi.org/10.1002/adsc.201000239

    Article  CAS  Google Scholar 

  17. Lan JW, Qu Y, Zhang X, Ma HR, Xu P, Sun JM (2020) A novel water-stable MOF Zn(Py)(Atz) as heterogeneous catalyst for chemical conversion of CO2 with various epoxides under mild conditions. J CO2 Util 35:216–224. https://doi.org/10.1016/j.jcou.2019.09.019

    Article  CAS  Google Scholar 

  18. Wang HH, Hou L, Li YZ, Jiang CY, Wang YY, Zhu Z (2017) Porous MOF with highly efficient selectivity and chemical conversion for CO2 ACS Appl. Mater Interfaces 9:17969–17976. https://doi.org/10.1021/acsami.7b03835

    Article  CAS  Google Scholar 

  19. Kulal N, Vasista V, Shanbhag GV (2019) Identification and tuning of active sites in selected mixed metal oxide catalysts for cyclic carbonate synthesis from epoxides and CO2. J CO Util [object Object]-[object Object]

    Article  CAS  Google Scholar 

  20. Wu XH, Wang MP, Xie YZ, Chen C, Li K, Yuan MM, Zhao XG, Hou ZS (2016) Carboxymethyl cellulose supported ionic liquid as a heterogeneous catalyst for the cycloaddition of CO2 to cyclic carbonate. Appl Catal A 519:146–154. https://doi.org/10.1016/j.apcata.2016.04.002

    Article  CAS  Google Scholar 

  21. Zhi YF, Shao PP, Feng X, Xia H, Zhang YM, Shi Z, Mu Y, Liu XM (2018) Covalent organic frameworks: efficient, metal-free, heterogeneous organocatalysts for chemical fixation of CO2 under mild conditions. J Mater Chem A 6:374–382. https://doi.org/10.1039/c7ta08629f

    Article  CAS  Google Scholar 

  22. Yan QD, Xu HJ, Jing XC, Hu H, Wang SL, Zeng CY, Gao YN (2020) Post-synthetic modification of imine linkages of a covalent organic framework for its catalysis application. RSC Adv 10:17396–17403. https://doi.org/10.1039/D0RA02142C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu MS, Lu XY, Shi L, Wang FX, Sun JM (2017) Periodic mesoporous organosilica with a basic urea-derived framework for enhanced carbon dioxide capture and conversion under mild conditions. Chemsuschem 10:1110–1119. https://doi.org/10.1002/cssc.201600973

    Article  CAS  PubMed  Google Scholar 

  24. Leonard GLM, Pirard SL, Belet A, Grignard B, Detrembleur C, JeŕômeHeinrichs CB (2019) Optimizing support properties of heterogeneous catalysts for the coupling of carbon dioxide with epoxides. Chem Eng J 371:719–729. https://doi.org/10.1016/j.cej.2019.04.055

    Article  CAS  Google Scholar 

  25. Wach A, Drozdek M, Dudek B, Szneler E, Kuśtrowski P (2015) Control of amine functionality distribution in polyvinylamine/SBA-15hybrid catalysts for Knoevenagel condensation. Catal Commun 64:52–57. https://doi.org/10.1016/j.catcom.2015.02.002

    Article  CAS  Google Scholar 

  26. Appaturi J, RafieJohan M, Ramalingam R, Al-Lohedan HA (2018) Highly efficient green mesostructured urea functionalized on SBA-15 catalysts for selective synthesis of benzlidenemalononitrile. Micropor Mesopor Mat 256:67–74. https://doi.org/10.1016/j.micromeso.2017.07.055

    Article  CAS  Google Scholar 

  27. Zhang M, Chu B, Li G, Xiao J, Zhang H, Peng Y, Li B, Xie P, Fan M, Dong L (2019) Triethanolamine-modified mesoporous SBA-15: Facile one-pot synthesis and its catalytic application for cycloaddition of CO2 with epoxides under mild conditions. Micropor Mesopor Mat 274:363–372. https://doi.org/10.1016/j.micromeso.2018.09.011

    Article  CAS  Google Scholar 

  28. Su Q, Qi Y, Yao X, Cheng W, Dong L, Chen S, Zhang S (2018) Ionic liquids tailored and confined by one-step assembly with mesoporous silica for boosting the catalytic conversion of CO2 into cyclic carbonate. Green Chem 20:3232–3241. https://doi.org/10.1039/C8GC01038B

    Article  CAS  Google Scholar 

  29. Lagarde F, Sroura H, Berthet N, Oueslati N, Bousquet B, Nunes A, Martinez A, Dufaud V (2019) Investigating the role of SBA-15 silica on the activity of quaternary ammonium halides in the coupling of epoxides and CO2. J CO2 Util [object Object]-[object Object]

    Article  CAS  Google Scholar 

  30. Ye Y, Li D, Xu P, Sun J (2020) B-Doped and NH2-functionalized SBA-15 with hydrogen bond donor groups for effective catalysis of CO2 cycloaddition to epoxides. Inorg Chem Front 7:3636–3645. https://doi.org/10.1039/D0QI00703J

    Article  CAS  Google Scholar 

  31. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548–552. https://doi.org/10.1126/science.279.5350.548

    Article  CAS  PubMed  Google Scholar 

  32. Li ZJ, Zhen MY, Xu QQ, Zhou D, Yin JZ (2019) Preparing supported ionic liquids by continuous supercritical carbon dioxide adsorption method. Mater Res Express 6:085035. https://doi.org/10.1088/2053-1591/ab1d41

    Article  CAS  Google Scholar 

  33. Sun J, Cheng WG, Fan W, Wang YH, Meng ZY, Zhang SJ (2009) Reusable and efficient polymer-supported task-specific ionic liquid catalyst for cycloaddition of epoxide with CO2. Catal Today 148:361–367. https://doi.org/10.1016/j.cattod.2009.07.070

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are very grateful for the financial support of the National Key R&D Program of China (Grant No. 2020YFA0710202) and the National Natural Science Foundation of China (Grant Nos. 21978043, U1662130) and the Fundamental Research Funds for the Central Universities (DUT20JC36).

Author information

Authors and Affiliations

Authors

Contributions

Prof. JZY designed experiments. JFS performed some experiments, data analysis and result integration. ZJL, XTL and MTX conducted experiments, characterization tests, and DFT calculations. Prof. JZY proposed suggestions and reviews in all aspects. All authors participated in the discussion of the results and commented on the manuscript.

Corresponding author

Correspondence to Jianzhong Yin.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1832 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Li, Z., Li, X. et al. DBU-Based Ionic Liquid Grafted SBA-15 Dual-Functional Catalyst for the Cycloaddition Reaction of CO2 and Epoxide. Catal Lett 152, 2669–2677 (2022). https://doi.org/10.1007/s10562-021-03840-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03840-0

Keywords

Navigation