Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Dry Reforming of Methane over Ni–Al2O3 and Ni–SiO2 Catalysts: Role of Preparation Methods

  • 41 Accesses

Abstract

The production of synthesis gas via the conversion of the two greenhouse gases CO2 and CH4 is an efficient process due to its dual industrial and environmental interest. The catalysts based on Ni–SiO2 and Ni–Al2O3 are typical and suitable for this reaction due to their mechanical strength, their good chemical and thermal stability in addition to their low cost and good availability. In this work, we have compared the catalytic performances of these two types of catalysts prepared by two different synthesis methods in dry reforming of methane (DRM).The results indicate that the catalytic performances are much more dependent on the support properties and that they are deeply influenced by the catalyst synthesis method. The textural properties as shown by N2-physisorption analysis are strongly dependent on the support nature in the case of the catalysts prepared by the microemulsion (ME) method and the alumina-based Ni catalyst has a higher specific surface area and a higher pore volume compared to the SiO2 based one. The XRD, H2-TPR and XPS results indicate that the preparation method has a significant influence on the state of NiO species. A Ni particle in the two Ni–SiO2–ME and Ni–Al2O3–ME catalysts prepared by microemulsion is much smaller. The strong metal support interaction promotes the formation of NiAl2O4 and Ni2SiO4 species respectively during the catalyst preparation process and makes the reduction of corresponding catalysts very difficult which may lead to a decrease in the content of active Ni species and give the Ni–Al2O3–ME catalyst a relatively low catalytic activity in DRM, especially when it is reduced under unfavorable conditions as is the case in this work. However, the strong metal support interaction between Ni and the support is also of beneficial to the formation and stabilization of small Ni particles well dispersed on the support after reduction of the Ni–SiO2–ME catalyst. In this system, the sintering and the carbon deposition are inhibited and the catalyst presents both better activity and stability. The Ni/Al2O3 catalyst exhibits a synergistic effect between the various phases NiO and NiAl2O4 formed during the synthesis process due to the different interactions strength between metal and support, which are in favor of the dispersion and stabilization of NiO species. As a result, Ni/Al2O3 provided with both proper textural properties and this synergistic effect, exhibits superior catalytic performances in term of activity, selectivity and stability in DRM. Despite the formation of carbon over this catalyst, it maintains its stability during a long-term test of more than 66 hours. This is due to the formation of active type of carbon and the delocalization of the Ni active sites on the latter to maintain their activity.

Graphic Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Özkara-Aydınoğlu Ş, Erhan Aksoylu A (2013) Chem Eng J 216:542–549

  2. 2.

    Gould TD, Montemore MM, Lubers AM, Ellis LD, Weimer AW, Falconer JL, Will Medlin J (2015) Appl Catal A General 492:107–116

  3. 3.

    Ghelamallah M, Granger P (2012) Fuel 97:269–276

  4. 4.

    Arbag H, Yasyerli S, Yasyerli N, Dogu G (2010) Int J Hydrog Energy 35:2296–2304

  5. 5.

    Damyanova S, Bueno JMC (2003) Appl CatalA General 253:135–150

  6. 6.

    Richardson JT, Paripatyadar SA (1990) Appl Catal 61:293–309

  7. 7.

    Jó́źwiak WK, Nowosielska M, Rynkowski JM (2005) Appl Catal A General 280:233–244

  8. 8.

    Ikkour K, Sellam D, Kiennemann A, Tezkratt S, Cherifi O (2009) Catal Lett 132:213–217

  9. 9.

    Dacquin J-P, Sellam D, Batiot-Dupeyrat C, Tougerti A, Duprez D, Royer S (2014) Chem SusChem7:631–637

  10. 10.

    Rezaei M, Alavi SM, Sahebdelfar S, Yan Z-F (2006) Energy Fuels 20:923–929

  11. 11.

    Rezaei M, Alavi SM, Sahebdelfar S, Yan Z-F (2007) Mater Lett 61:2628–2631

  12. 12.

    Sellam D, Ikkour K, Dekkar S, Messaoudi H, Belaid T, Roger AC (2019) BCREC 14:568–578

  13. 13.

    Djaidja A, Libs S, Kiennemann A, Barama A (2006) Catal Today 113:194–200

  14. 14.

    Liu G, Li Y, Chu W, Shi X, Dai X, Yin Y (2008) Catal Commun 9:1087–1091

  15. 15.

    Pan Y, Liu C-J, Shi P (2008) J Power Sources 176:46–53

  16. 16.

    Wang S, Lu GQ (1998) Appl Catal A 169:271–280

  17. 17.

    Gao J, Hou Z, Guo J, Zhu Y, Zheng X (2008) Catal Today 131:278–284

  18. 18.

    Guo J, Lou H, Zhao H, Chai D, Zheng X (2004) Appl Catal A 273:75–82

  19. 19.

    York APE, Xiao T, Green MLH (2003) Green Top Catal 22:345–358

  20. 20.

    Dissanayake D, Rosynek MP, Kharas KCC, Lunsford JH (1991) J Catal 132:117–127

  21. 21.

    Requies J, Cabrero MA, Laura Barrio V, Güemez MB, Cambra JF, Arias P, Perez-Alonso FJ, Ojeda MP, Peña MA, Fierro JLG (2005) Appl Catal A 289:214–223

  22. 22.

    Choudhary VR, Rajput AM, Mamman AS (1998) J Catal 178:576

  23. 23.

    Quek X-Y, Lu D, Cheo WNE, Wang H, Chen Y, Yang Y (2010) Appl Catal B 95:374–382

  24. 24.

    Hou Z, Gao J, Guo J, Liang D, Lou H, Zheng X (2007) J Catal 250:331–341

  25. 25.

    Han LJ, Li Y, Bao Z (2015) Appl Catal A General 49:1116–1126

  26. 26.

    Majewski AJ, Wood J, Bujalski W (2013) Int J Hydrog Energy 38:14531–14541

  27. 27.

    Lv X, Chen J-F, Tan Y, Zhang Y (2012) Catal Commun 20:6–11

  28. 28.

    Bian Z, Suryawinata IY, Kawi S (2016) Appl Catal B 195:1–8

  29. 29.

    Li Z, Li M, Bian Z, Kathiraser Y, Kawi S (2016) Appl Catal B-Environ 188:324–341

  30. 30.

    Das S, Ashok J, Bian Z, Dewangan N, Wai M, Du Y, Borgna A, Hidajat K, Kawi S (2018) Appl Catal B: Environ 230:220–236

  31. 31.

    Li Z, Kawi S (2018) ChemCatChem 10:2994–3001

  32. 32.

    Li Z, Jiang B, Wang Z, Kawi S (2018) J CO2 Utilization 27:238-246

  33. 33.

    Li Z, Wang Z, Kawi S (2019) ChemCatChem 11:202–224

  34. 34.

    He S, Wu H, Yu W, Mo L, Lou H, Zheng X (2009) Int J Hydrog Energy 34:839–843

  35. 35.

    He S, Jing Q, Yu W, Mo L, Lou H, Zheng X (2009) Catal Today 148:130–133

  36. 36.

    Takahashi R, Sato S, Sodesawa T, Tomiyama S (2005) Appl Catal A General 286:142–147

  37. 37.

    Lovell EC, Fuller A, Scott J, Amal R (2016) Appl Catal B Environ 199:155–165

  38. 38.

    XY Gao, K Hidajat, S Kawi (2016) J CO2 Utilization 15:146-153

  39. 39.

    Li Z, Mo L, Kathiraser Y, Kawi S (2014) ACS Catal 4(5):1526–1536

  40. 40.

    Boutonnet M, Lögdberg S, Svensson EE (2008) Curr Opin Colloid Interface Sci 13:270–286

  41. 41.

    Eriksson S, Nylén U, Rojas S, Boutonnet M (2004) Appl Catal A General 265:207–219

  42. 42.

    Kim W-Y, Hayashi H, Kishida M, Nagata H, Wakabayashi K (1998) Appl Catal A General 169:157–164

  43. 43.

    Bian Z, Das S, Wai M-H, Hongmanorom P, Sibudjing K (2017) ChemPhysChem 18:3117–3134

  44. 44.

    Li Z, Das S, Hongmanorom P, Dewangan N, Wai HW, Kawi S (2018) Catal Sci Technol 8:2763–2778

  45. 45.

    Xu S, Zhao R, Wang X (2004) Fuel Process Techno 86:123–133

  46. 46.

    Shiraz MHA, Rezaei M, Meshkani F (2016) Int J Hydrog Energy 41:6353–6361

  47. 47.

    Takenaka S, Huri KH, Matsune H, Kishida M (2005) Chem Lett 34(12):1594–1595

  48. 48.

    Takenaka S, Umebayashi H, Tanabe E, Matsune H, Kishida M (2007) J Catal 245:392–400

  49. 49.

    Takenaka S, Yoshiki O, Hiroshi U, Matsune H, Kishida M (2008) Appl Catal A 351:189–194

  50. 50.

    Usman M, Bin WMA, Daud W (2016) RSC Adv 44:38277–38289

  51. 51.

    Yahi N, Menad SI (2015) Green Process Synth 4(6):479–486

  52. 52.

    Takahashi R, Sato S, Toshiaki S, Norifumi N, Satoshi T, Takatoshi K, Satoshi Y (2001) J Nanosci Nanotech 1:169–176

  53. 53.

    Tomiyama S, Takahashi R, Sato S, Sodesawa T, Yoshida S (2003) Appl Catal A 241:349–361

  54. 54.

    Takahashi R, Sato S, Tomiyama S, Ohashi T, Nakamura N (2007) Microporous Mesoporous Mater 98:107–114

  55. 55.

    Sahli N, Petit C, Roger AC, Kennemann A (2006) Catal Today 113:187–193

  56. 56.

    Shamskar FR, Rezaei M, Meshkani F (2017) Int J Energy 42:4155–4164

  57. 57.

    Shang Z, Li S, Li L, Liu G, Liang X (2017) Appl Catal B 201:302–309

  58. 58.

    Jiménez-González C, Boukha Z, Delgado JJ, Cauqui MA, González-Velasco JR, Gutiérrez-Ortiz JI, López-Fonseca R (2013) Appl Catal A General 466:9–20

  59. 59.

    Guohui L, Hill LM (2006) Appl Catal A General 301:16–24

  60. 60.

    Hao Z, Zhu Q, Jiang Z, Hou B, Li H (2009) Fuel ProcessTechn 90:113–121

  61. 61.

    Fu Y, Wu Y, Cai W, Yue B, He H (2015) Sci China 58:148–155

  62. 62.

    Morris SM, Fulvio PF, Jaroniec M (2008) J Am Chem Soc 130:15210–15216

  63. 63.

    Akia M, Alavi SM, Rezaei M, Yan Z-F (2009) Microporous Mesoporous Mater 122:72–78

  64. 64.

    Akri M, Chafik T, Granger P, Ayrault P, Batiot-Dupeyrat C (2016) Fuel 178:139–147

  65. 65.

    Lian J, Chen S, Zhou S, Wang Z, O’Fallon J, Li C-Z, Garcia-Perez M (2010) Bioresource Technol 101:9688–9699

  66. 66.

    Chi Z, Rover M, Jun E, Deaton M, Johnston P, Brown RC, Wen Z, Jarboe LR (2013) Bioresource Technol 150:220–227

  67. 67.

    Xingkun Ning, Zhanjie Wang, Zhidong Zhang (2015) Fermi level shifting, charge transfer and induced magnetic coupling at La0.7Ca0.3MnO3/LaNiO3 interface. Sci Rep 5:8460

  68. 68.

    Kim S, Kim MC, Choi SH, Kim KJ, Hwang HN, Hwang CC (2007) Appl Phys Lett 91:103–113

  69. 69.

    Benrabaa R, Barama A, Boukhlouf H, Guerrero-Caballero J, Rubbens A, Bordes-Richard E, Löfberg A, Vannier R-N (2017) Int J Hydrog Energy 42:12989–12996

  70. 70.

    Sivaiah MV, Petit S, Barrault J, Batiot-Dupeyrat C, Valange S (2010) Catal Today 157:397–403

  71. 71.

    Kim P, Joo JB, Kim H, Kim W, Kim Y, Song IK, Yi J (2005) Catal Lett 104:181–189

  72. 72.

    Wang Z, Xun H (2017) Fuel Process Technol 155:246–251

  73. 73.

    Challiwala MS, Ghouri MM, Linke P, El-Halwagi M, Elbashir NO (2017) J CO2 Utilization 17:99–111

  74. 74.

    Woo Han J, Kim C, Park JS, Lee H (2014) ChemSusChem 7:451–456

  75. 75.

    Gould TD, Izar A, Weimer AW, Falconer JL, Medlin JW (2014) ACS Catal 4:2714–2717

  76. 76.

    Zhang J, Li F (2015) Appl Catal B Environ 176–177:513–521

  77. 77.

    Norval SV, Thomsib SJ, Webb G (1980) Appl Surface Sci 4:49–51

  78. 78.

    Segner J, Campbell CT, Doyen G, Ertl G (1984) Surface Sci 138:505–523

  79. 79.

    Kuijpers EGM, Breedijk AK, van der Wal WJJ, Geus JW (1983) J Catal 81:429–439

  80. 80.

    Beebe Jr. TP, Wayne Goodman D, Kay BD (1987) J Chem Phys 87:2305– 2315

  81. 81.

    Das S, Sengupta M, Patel J, Bordoloi A (2017) Appl Catal A General 545:113–126

  82. 82.

    Chen Y, Ren J (1994) Catal Lett 29:39–48

  83. 83.

    Baktash E, Littlewood P, Schomäcker R, Thomas A, Stair PC (2015) Appl Catal B Environ 179:122–127

  84. 84.

    Wang S, Qing Lu G (1998) Appl Catal B Environ 1(16):269–277

  85. 85.

    Enger BC, Lodeng R, Walmsley J, Holmen A (2010) Appl Catal A General 383:119–127

  86. 86.

    Duprez D, Micheli MCD, Marécot P, Barbier J, Ferreti OA, Ponzi EN (1990) J Catal 124:324–335

  87. 87.

    Hao Z, Zhu Q, Lei Z, Li H (2008) Powder Technol 182:474–479

  88. 88.

    Jiang H, Li H, Hongbin X, Zhang Y (2007) Fuel Process Technol 88:988–995

  89. 89.

    Bang S, Hong E, Baek SW, Shin C-H (2018) Catal Today 303:100–105

  90. 90.

    Nair MM, Kaliaguine S, Kleitz F (2014) ACS Catal 4:3837–3846

  91. 91.

    Horvath A, Stefler G, Geszti O, Kienneman A (2011) Catal Today 169:102–111

  92. 92.

    Kan H, Lee H (2010) Appl Catal B 97:108–114

  93. 93.

    Pan YX, Liu C-J, Cui L (2008) Catal Lett 123:96–101

  94. 94.

    Guo JJ, Lou H (2007) Carbon 45:1314–1321

  95. 95.

    Zhang WD, Liu BS (2005) Appl Catal A General 292:138–143

  96. 96.

    Effendi A, Hellgardt K, Zhang ZG, Yoshida T (2003) Catal Commun 4:203–207

  97. 97.

    Wang S, Lu GQ (1997) Appl Catal A General 167:271–280

  98. 98.

    Xu Y, Du X, Li J, Wang P (2019) J Fuel Chem Technol 47:200–208

  99. 99.

    Zhang S, Wang J (2008) Catal Commun 9:995–1000

  100. 100.

    Tracz E, Scholz R, Borowiecki T (1990) Appl Calal 66:133–147

  101. 101.

    Swaan HM, Kroll VCH, Martin GA, Mirodatos C (1994) Catal Today 21:571–578

  102. 102.

    Kroll VCH, Swaan HM, Mirodatos C (1996) J Catal 161:409–422

  103. 103.

    de Lima SM, da Silva AM, da Costa LOO, Graham UM, Jacobs G, Davis B, Mattos LV, Noronha F (2009) J Catal 268:268

  104. 104.

    Castro-Luna AE, Iriarte ME (2008) Appl Catal A 343:10–15

  105. 105.

    José-Aanso DS, Juan-Juan J, Illan-Gomez MJ, Román-Martínez C (2009) Catal Appl A 371:54–59

Download references

Author information

Correspondence to S. Dekkar.

Ethics declarations

Conflict of interest

All authors declare that they no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dekkar, S., Tezkratt, S., Sellam, D. et al. Dry Reforming of Methane over Ni–Al2O3 and Ni–SiO2 Catalysts: Role of Preparation Methods. Catal Lett (2020). https://doi.org/10.1007/s10562-020-03120-3

Download citation

Keywords

  • Dry reforming
  • Methane
  • Microemulsion
  • NiAl2O4
  • Spinel
  • Silica-coated Ni