Recent Advances on the Use of Nickel Nano Layered Double Hydroxides as Green, and Efficient, Catalysts for Water Splitting

  • Daniel Likius
  • Ateeq RahmanEmail author
  • Chiguvare Zivayi
  • Veikko Uahengo


This review focusses on the recent developments in designing Layered Double Hydroxides (LDHs) with conductive, interlayer anion replacement, for efficient hydrogen fuel production by water splitting through Oxygen Evolution Reactions (OER) and Hydrogen Evolution Reactions (HER). Nickel nano structured catalysts improves OER performance are highlighted in detail in terms of compositional differences between transitional metal components, and challenges in future designing of rationalized Ni and Ni nano LDHs. The layered structure has exceptional flexibility of incorporating mixed valence transition metal ions into the LDHs structure in different compositions and this opens the massive potential to design high-performance LDHs catalysts on the molecular and nanometer scales. LDHs such as NiCoFe LDHs, Ni foam, Co Ni nano spheres, RuO2, Ir(dppe)2Cl, NiS2, Ni–N–Co-doped carbon nano fibers, NiCoSe2/cHRD are attracting increasing interest in the field of water splitting into hydrogen and oxygen due to their unique physicochemical properties. The highlighted summary will provide useful information in the development of novel Ni LDHs catalysts, which enables better understanding of OER properties valuable to address key issues. Increased fundamental understanding of water splitting catalysts would allow for rationally-directed improvements.

Graphic Abstract


NiFe LDHs Electro-catalysts Water splitting Ni co complexes 



The authors acknowledges University of Namibia for supporting this project.


  1. 1.
    Zhengyang C, Xiuming B, Ping W, Johnny CH, Junhe Y, Xianying W (2019) J Mater Chem A 7:5069–5089CrossRefGoogle Scholar
  2. 2.
    Wang Z, Long X, Yang S (2018) ACS Omega 3:16529–16541PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Carmo M, Fritz DL, Mergel J, Stolten D (2013) Int J Hydrogen Energy 38:4901–4934CrossRefGoogle Scholar
  4. 4.
    Yulian N, Ruiyi L, Zaijun L, Yinjun F, Junkang L (2013) Electrochim Acta 94:360–365CrossRefGoogle Scholar
  5. 5.
    Over H (2012) Chem Rev 112:3356–3426PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Luo J, Im J-H, Mayer MT, Schreier M, Nazeeruddin MK, Park N-G, Tilley SD, Fan HJ, Grätzel M (2014) Science 345:1593–1596PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Lee Y, Suntivich J, Kevin JM, Erin EP, Yang S (2012) J Phys Chem Lett 3:399–404PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Ming F, Liang H, Shi H, Xu X, Mei G, Wang Z (2016) J Mater Chem A 4:15148–15155CrossRefGoogle Scholar
  9. 9.
    Liang H, Gandi AN, Anjum DH, Wang X, Schwingenschlög U, Alshareef HN (2016) Nano Lett 16:7718–7725PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    London J, Demeter E, Inoglu N, Keturakis C, Wachs IE, Vasic R, Frenkel AI, Kitchin JR (2012) ACS Catal 2:1793–1801CrossRefGoogle Scholar
  11. 11.
    Qi J, Zhang W, Cao R (2017) Adv Energy Mater 7:1701620–1701626Google Scholar
  12. 12.
    Li C, Wei M, Evans DG, Duan X (2014) Small 10:4469–4486PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Trotochaud L, Young SL, Ranney JK, Boettcher SW (2014) J Am Chem Soc 136:6744–6753PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Louie MW, Bell AT (2013) J Am Chem Soc 135:12329–12337PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Gong M, Li Y, Wang H, Liang Y, Wu JZ, Zhou J, Wang J, Regier T, Wei F, Dai H (2013) J Am Chem Soc 135:8452–8455PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Gong M, Zhou W, Tsai M-C, Zhou J, Guan M, Lin M-C, Zhang B, Hu Y, Wang D-Y, Yang J (2014) Nat Commun 5:4695–4695PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Tang C, Wang HF, Zhu X-L, Li BQ, Zhang Q (2016) Part Part Syst Charact 33:473–486CrossRefGoogle Scholar
  18. 18.
    Song F, Bai L, Moysiadou A, Lee S, Hu C, Liardet L, Hu X (2018) J Am Chem Soc 140:7748–7759PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Gu Z, Atherton JJ, Xu ZP (2015) Chem. Commun 51:3024–3036CrossRefGoogle Scholar
  20. 20.
    Zhao Y, Li B, Wang Q, Gao W, Wang CJ, Wei M, Evans DG, Duan X, Hare DO (2014) J Chem Sci 5:951–958CrossRefGoogle Scholar
  21. 21.
    Liu S, Lee SC, Patil U, HackeryI S, Kang S, Zhang K, Park JH, Chung KY, Jun SC (2017) J Mater Chem A 5:1043–1049CrossRefGoogle Scholar
  22. 22.
    Wang Q, Shang L, Shi R, Zhang X, Zhao Y, Waterhouse GIN, Wu L-Z, Tung C-H, Zhang T (2017) Adv Energy Mater 7:1700467CrossRefGoogle Scholar
  23. 23.
    Ribeiro LNM, Alcantara ACS, Darder M, Aranda P, Araujo-Moreira FM, Ruiz-Hitzky E (2014) Int J Pharm 463:1–9PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Choudary BM, Kantam ML, Rahman A, Reddy CV, Koteshwar Rao K (2001) Angew Chem Int Ed 40:763–766CrossRefGoogle Scholar
  25. 25.
    Shan RR, Yan LG, Yang K, Hao YF, Du B (2015) J Hazard Mater 299:42–46PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Liang R, Tian R, Ma L, Zhang L, Hu Y, Wang J, Wei M, Yan D, Evans DG, Duan X (2014) Adv Funct Mater 24:3144CrossRefGoogle Scholar
  27. 27.
    Luo J, Im JH, Mayer MT, Schreier M, Nazeeruddin MK, Park NG, Tilley SD, Fan HJ, Gratzel M (2014) Science 345:1593PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Ning F, Shao M, Zhang C, Xu S, Wei M, Duan X (2014) Nano Energy 7:134CrossRefGoogle Scholar
  29. 29.
    Shi H, Liang H, Ming F, Wang Z (2017) Chem Int Ed 56:573–577CrossRefGoogle Scholar
  30. 30.
    Hunter BM, Hieringer W, Winkler J, Gray H, Müller A (2016) Energy Environ Sci 9:1734CrossRefGoogle Scholar
  31. 31.
    Friebel D, Louie MW, Bajdich M, Sanwald KE, Cai Y, Wise AM, Cheng M-J, Sokaras D, Weng T-C, Alonso-Mori R, Davis RC, Bargar JR, Norskov JK, Nilsson A, Bell AT (2015) J Am Chem Soc 137:1305PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Leung DYC, Fu XL, Wang CF, Ni M, Leung MKH, Wang XX, Fu XZ (2010) ChemSuschem 3:681–694PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Gao X, Zhang H, Li Q, Yu X, Hong Z, Zhang X, Liang C, Lin Z (2016) Angew Chem Int Ed 55:6290–6294CrossRefGoogle Scholar
  34. 34.
    Feng L-L, Yu G, Wu Y, Li G-D, Li H, Sun Y, Asefa T, Chen W, Zou X (2015) J Am Chem Soc 137:14023–14026PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Ledendecker M, KrickCalderón S, Papp C, Steinrück H-P, Antonietti M, Shalom M (2015) Angew Chem Int Ed 54:12361CrossRefGoogle Scholar
  36. 36.
    Anjum MAR, MamutSait O, Minkyung K, Min HL, NoeJung P, Jae SL (2018) Nano Energy 51:286–293CrossRefGoogle Scholar
  37. 37.
    Shuaipeng W, Li X, Weixin L (2018) Appl Surf Sci 457:156–163CrossRefGoogle Scholar
  38. 38.
    Yang Y, Zhang K, Lin H, Li X, Chan HC, Yang L, Gao Q (2017) ACS Catal 7:2357–2366CrossRefGoogle Scholar
  39. 39.
    Xiao Y, Feng L, Hu C, Fateev V, Liu C, Xing W (2015) RSC Adv 5:61900–61905CrossRefGoogle Scholar
  40. 40.
    Liu ZQ, Chen GF, Zhou PL, Li N, Su YZ (2016) J Power Sources 317:1–9CrossRefGoogle Scholar
  41. 41.
    Wu Z-Y, Hu B-C, Wu P, Liang H-W, Yu Z-L, Lin Y, Zheng Y-R, Li Z, Yu S-H (2016) Asia Mater 8:e288CrossRefGoogle Scholar
  42. 42.
    Wu Z-Y, Liang H-W, Chen L-F, Hu B-C, Yu S-H (2016) Acc Chem Res 49:96–105PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Jin H, Wang J, Su D, Wei Z, Pang Z, Wang Y (2015) J Am Chem Soc 137:688–2694Google Scholar
  44. 44.
    Deng D, Yu L, Chen X, Wang G, Jin L, Pan X, Deng J, Sun G, Bao X (2013) Angew Chem Int Ed 52:371–375CrossRefGoogle Scholar
  45. 45.
    Deng J, Ren P, Deng D, Yu L, Yang F, Bao X (2014) Energy Environ Sci 7:919–1923CrossRefGoogle Scholar
  46. 46.
    Liu Y, Hua X, Xiao C, Zhou T, Huang P, Guo Z, Pan B, Xie Y (2016) J Am Chem Soc 138:5087–5092PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Ming F, Liang H, Shi H, Xu X, Mei G, Wang Z (2016) MOF-derived Co-doped nickel selenide/C electrocatalysts supported on Ni foam for overall water splitting. J Mater Chem A 4:15148–15155CrossRefGoogle Scholar
  48. 48.
    Liang H, Shi H, Zhang D, Ming F, Wang R, Zhuo J, Wang Z (2016) Chem Mater 28:5587–5591CrossRefGoogle Scholar
  49. 49.
    Liang H, Gandi AN, Xia C, Hedhili MN, Anjum DH, Schwingenschlög U, Alshareef HN (2017) ACS Energy Lett 2:718–7725Google Scholar
  50. 50.
    Jiang Z, Li Z, Qin Z, Sun H, Jiao X, Chen D (2013) Nanoscale 5:11770–11775PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Ming F, Hanfeng L, Huanhuan S, Gui M, Zhoucheng W (2017) Electrochim Acta 250:167–173CrossRefGoogle Scholar
  52. 52.
    Silversmit G, Depla D, Poelman H, Marin GB, De Gryse R (2004) J Electron Spectrosc 135:167–175CrossRefGoogle Scholar
  53. 53.
    Walter MG (2010) Chem Rev 110:6446–6473PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    McCrory CCL, Jung S, Peters JC, Jaramillo TF (2013) J Am Chem Soc 135:16977–16987PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Song F, Hu X (2014) Cat Commun 5:4477Google Scholar
  56. 56.
    Ma W (2015) ACS Nano 9:1977–1984PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Song F, Hu X (2014) J Am Chem Soc 136:16481–16484PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Lopes T, Andrade L, Ribeiro HA, Mendes A (2010) Int J Hydrogen Energy 35:1601–11608Google Scholar
  59. 59.
    Long X, Xiao S, Wang Z, Zheng X, Yang S (2015) Chem Commun 51:1120–1123CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Daniel Likius
    • 1
  • Ateeq Rahman
    • 1
    Email author
  • Chiguvare Zivayi
    • 2
  • Veikko Uahengo
    • 1
  1. 1.Department of Chemistry and Biochemistry, Faculty of ScienceUniversity of NamibiaWindhoekNamibia
  2. 2.Department of PhysicsUniversity of NamibiaWindhoekNamibia

Personalised recommendations