The Effect of Mn Content on Catalytic Activity of the Co–Mn–Ce Catalysts for Propane Oxidation: Importance of Lattice Defect and Surface Active Species

  • Pan WangEmail author
  • Chenrui Cui
  • Kai Li
  • Jing Yi
  • Lili Lei


Composite oxide catalysts with Co/Mn/Ce molar ratio of 3:x:2(x = 1, 3, 5 and 7) have been successfully prepared by co-precipitation method. The crystal phase structure, elemental valence, oxygen vacancy and reductivity of the catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), H2 temperature program reduction(H2-TPR) and in situ DRIFTs. The results demonstrated that when x = 1, the Co–Mn–Ce catalyst had the smallest grain size and oxygen vacancy. A flow reactor experimental system was used to analyze the effect of Mn content on light-off temperature (T10) and complete oxidation temperature (T90) of propane oxidation over Co–Mn–Ce catalysts under anhydrous condition and 5% vol of water vapor. The results showed that when x = 1, the catalyst exhibits the highest activity (T10 = 200 °C, T90 = 307 °C) and water tolerance among the four catalysts. It indicated that when x = 1, the incorporation of Mn content can improve the ability of Co–Mn–Ce catalysts for propane oxidation. Based on the Langmuir–Hinshelwood theory, the surface chemical reaction pathway of propane oxidation was constructed and it revealed that the major active sites of Co–Mn–Ce catalysts mainly depend on surface oxygen vacancy and the surface active species (Mn4+,Oads).

Graphic Abstract


Composite oxide catalysts Propane Catalytic oxidation Oxygen vacancy Light-off temperature 



This work is supported by the National Natural Science Fund (51676090) and the National Engineering Laboratory Open Fund for Mobile Source Pollution Emission Control Technology (NELMS2018A18) for financial supports.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Guo H, Ling ZH, Cheng HR, Simpson IJ, Lyu XP, Wang XM, Shao M, Lu HX, Ayoko G, Zhang YL, Saunders SM, Lam SHM, Wang JL, Blake DR (2017) Sci Total Environ 574:1021–1043. CrossRefPubMedGoogle Scholar
  2. 2.
    Riipinen I, Yli-Juuti T, Pierce JR, Petäjä T, Worsnop DR, Kulmala M, Donahue NMJNG (2012) Nat Geosci 5:453–458. CrossRefGoogle Scholar
  3. 3.
    Liu T, Wang X, Deng W, Hu Q, Ding X, Zhang Y, He Q, Zhang Z, Lü S, Bi X, Chen J, Yu J (2015) Atmos Chem Phys 15:9049–9062. CrossRefGoogle Scholar
  4. 4.
    Everaert K, Baeyens J (2004) J Hazard Mater 109(1–3):113–139. CrossRefPubMedGoogle Scholar
  5. 5.
    Taylor MN, Zhou W, Garcia T, Solsona B, Carley AF, Kiely CJ, Taylor SH (2012) J Catal 285(1):103–114. CrossRefGoogle Scholar
  6. 6.
    Taylor M, Ndifor EN, Garcia T, Solsona B, Carley AF, Taylor SH (2008) Appl Catal A 350(1):63–70. CrossRefGoogle Scholar
  7. 7.
    Yang JS, Jung WY, Lee GD, Park SS, Jeong ED, Kim HG, Hong SS (2008) J Ind Eng Chem 14(6):779–784. CrossRefGoogle Scholar
  8. 8.
    Li TY, Chiang SJ, Liaw BJ, Chen YZ (2011) Appl Catal B 103(1–2):143–148. CrossRefGoogle Scholar
  9. 9.
    Genuino HC, Dharmarathna S, Njagi EC, Mei MC, Suib SL (2012) J Phys Chem C 116(22):12066–12078. CrossRefGoogle Scholar
  10. 10.
    Bampenrat A, Meeyoo V, Kitiyanan B, Rangsunvigit P, Rirksomboon T (2008) Catal Commun 9(14):2349–2352. CrossRefGoogle Scholar
  11. 11.
    Trovarelli A (1996) Catal Rev 38(4):439–520. CrossRefGoogle Scholar
  12. 12.
    Hu Z, Liu X, Meng D, Guo Y, Guo Y, Lu G (2016) ACS Catal 6(4):2265–2279. CrossRefGoogle Scholar
  13. 13.
    Hu F, Peng Y, Chen J, Liu S, Song H, Li J (2019) Appl Catal B 240:329–336. CrossRefGoogle Scholar
  14. 14.
    Mo S, Li S, Li J, Peng S, Chen J, Chen Y (2016) Catal Commun 87:102–105. CrossRefGoogle Scholar
  15. 15.
    Zhang W, Hu L, Wu F, Li J (2017) Catal Lett 147(2):407–415. CrossRefGoogle Scholar
  16. 16.
    Shang DH, Zhong Q, Cai W (2015) Appl Surf Sci 325:211–216. CrossRefGoogle Scholar
  17. 17.
    Sun YH, Zhang GJ, Xu Y, Zhang RG (2019) Int J Hydrog Energy 44(41):22972–22982. CrossRefGoogle Scholar
  18. 18.
    Garcilaso V, Barrientos J, Bobadilla LF, Laguna OH (2019) Renew Energy 132:1141–1150. CrossRefGoogle Scholar
  19. 19.
    Konsolakis M, Sgourakis M, Carabineiro SAC (2015) Appl Surf Sci 341:48–54. CrossRefGoogle Scholar
  20. 20.
    Zou G, Fan Z, Yao X, Zhang Y, Zhang Z, Chen M, Shangguan W (2017) Chin J Catal 38(3):564–572. CrossRefGoogle Scholar
  21. 21.
    Wang C, Zhang C, Hua W, Guo Y, Lu G, Gil S, Giroir-Fendler A (2017) Chem Eng J 315:392–402. CrossRefGoogle Scholar
  22. 22.
    Mukherjee D, Devaiah D, Venkataswamy P, Vinodkumar T, Smirniotis PG, Reddy BM (2018) New J Chem 42:14149–14156. CrossRefGoogle Scholar
  23. 23.
    Gómez DM, Galvita VV, Gatica JM, Hilario V, Marin GB (2014) Phys Chem Chem Phys 16(23):11447–11455. CrossRefPubMedGoogle Scholar
  24. 24.
    Li X, Li X, Zeng X, Zhu T (2019) Appl Catal A 572:61–70. CrossRefGoogle Scholar
  25. 25.
    Zhang S, Liu S, Zhu X, Yang Y, Hu W, Zhao H, Qu R, Zheng C, Gao X (2019) Appl Surf Sci 479:1132–1140. CrossRefGoogle Scholar
  26. 26.
    Kim SC, Shim W (2010) Appl Catal B 98(3–4):180–185. CrossRefGoogle Scholar
  27. 27.
    Álvarez-Galván MC, dela Peña O’Shea VA, Fierro JLG, Arias PL (2003) Catal Commun 4(5):223–228. CrossRefGoogle Scholar
  28. 28.
    Castaño MH, Molina R, Moreno S (2017) Mol Catal 443:117–124. CrossRefGoogle Scholar
  29. 29.
    Tang W, Wu X, Li S, Li W, Chen Y (2014) Catal Commun 56:134–138. CrossRefGoogle Scholar
  30. 30.
    Faure B, Alphonse P (2016) Appl Catal B 180:715–725. CrossRefGoogle Scholar
  31. 31.
    Todorova S, Kolev H, Holgado JP, Kadinov G, Bonev C, Pereñíguez R, Caballero A (2010) Appl Catal B 94(1–2):46–54. CrossRefGoogle Scholar
  32. 32.
    Cuo Z, Deng Y, Li W, Peng S, Zhao F, Liu H, Chen Y (2018) Appl Surf Sci 456:594–601. CrossRefGoogle Scholar
  33. 33.
    Wang X, Kang Q, Li D (2008) Catal Commun 9(13):2158–2162. CrossRefGoogle Scholar
  34. 34.
    Wang Y, Deng W, Wang Y, Guo L, Ishihara T (2018) Mol Catal 459:61–70. CrossRefGoogle Scholar
  35. 35.
    Morales M, Barbero B, Cadus L (2006) Appl Catal B 67(3–4):229–236. CrossRefGoogle Scholar
  36. 36.
    Kim MH, Cho KH, Shin CH, Kang SE, Ham SW (2011) Korean J Chem Eng 28(4):1139–1143. CrossRefGoogle Scholar
  37. 37.
    Lin J, Guo Y, Chen X, Li C, Lu S, Liew KM (2017) Catal Lett 148(1):181–193. CrossRefGoogle Scholar
  38. 38.
    Kan J, Deng L, Li B, Huang Q, Zhu S, Shen S, Chen Y (2017) Appl Catal A 530:21–29. CrossRefGoogle Scholar
  39. 39.
    Bae J, Kim BS, Jeong H, Lee H (2019) Mol Catal 467:9–15. CrossRefGoogle Scholar
  40. 40.
    Fuentes RO, Baker RT (2008) J Phys Chem C 113(3):914–924. CrossRefGoogle Scholar
  41. 41.
    Liu Y, Dai H, Deng J, Du Y, Xi L, Zhao Z, Wang Y, Gao B, Yang H, Guo G (2013) Appl Catal B 140–141:493–505. CrossRefGoogle Scholar
  42. 42.
    Tang W, Wu X, Li S, Shan X, Liu G, Chen Y (2015) Appl Catal B 162:110–121. CrossRefGoogle Scholar
  43. 43.
    Velu S, Shah N, Jyothi TM, Sivasanker S (1999) Microporus Mesoporus Mater 33:61–75. CrossRefGoogle Scholar
  44. 44.
    Zhao J, Zhang Y, Zhang S, Wang Q, Chen M, Hu T, Meng C (2018) Microporus Mesoporus Mater 268:16–24. CrossRefGoogle Scholar
  45. 45.
    Song W, Poyraz AS, Meng Y, Ren Z, Chen SY, Suib SL (2014) Chem Mater 26(15):4629–4639. CrossRefGoogle Scholar
  46. 46.
    Tang W, Li W, Li D, Liu G, Wu X, Chen Y (2014) Catal Lett 144(11):1900–1910. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Automotive and Traffic EngineeringJiangsu UniversityZhenjiangChina

Personalised recommendations