Influence of Silanol Defects of ZSM-5 Zeolites on Trioxane Synthesis from Formaldehyde

  • Yuling Ye
  • Mengqin Yao
  • Honglin ChenEmail author
  • Xiaoming Zhang


The silanol defects in ZSM-5 zeolite have been recognized as an important factor in catalytic activity. Here, ZSM-5 zeolites with different amounts of silanol defect sites were synthesized from synthetic gels containing fluoride medium and were applied as catalysts for trioxane synthesis. The results of XRD, SEM, NH3-TPD, Py-IR, OH-IR, 27Al MAS NMR, 1H MAS NMR, and TG indicated that all ZSM-5 zeolites showed similar crystal size, relative crystallinity, porosity, and the number of Brønsted acid sites. However, the silanol defects reduced obviously and the number of Lewis acid sites reduced correspondingly when a little NH4F was added in the synthesis gels and both of them decreased slightly with increase of F/Si ratio. Compared with ZSM-5 zeolite prepared in hydroxide medium, ZSM-5 zeolite prepared in fluoride medium displayed higher selectivity to trioxane and increased gradually with increase of F/Si ratio. Moreover, the lifetime of ZSM-5 zeolite prepared in fluoride medium was longer than that of prepared in hydroxide medium. Thus, ZSM-5 zeolite prepared in fluoride medium which contained the few silanol defects and low Lewis acid sites is an efficient catalyst for trioxane synthesis.

Graphic Abstract


ZSM-5 zeolite Fluoride Silanol defects Lewis acid Trioxane synthesis 



This work was supported by the National Key R&D Program of China (Grant Number 2018YFB0604902). The funding source has no role in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Wu Q, Li WJ, Wang M, Hao Y, Chu TH, Shang JQ, Li HS, Zhao Y, Jiao QZ (2015) RSC Adv 5:57968–57974CrossRefGoogle Scholar
  2. 2.
    Baranowski CJ, Bahmanpour AM, Krocher O (2017) Appl Catal B Environ 217:407–420CrossRefGoogle Scholar
  3. 3.
    Wu JB, Zhu HQ, Wu ZW, Qin ZF, Yan L, Du BL, Fan WB, Wang JG (2015) Green Chem 17:2353–2357CrossRefGoogle Scholar
  4. 4.
    Wang RY, Wu ZW, Li ZK, Qin ZF, Chen CM, Zheng ZF, Wang GF, Fan WB, Wang JG (2019) Appl Catal A Gen 570:15–22CrossRefGoogle Scholar
  5. 5.
    Mu YB, Jia MC, Jiang W, Wan XB (2013) Macromol Chem Phys 214:2752–2760CrossRefGoogle Scholar
  6. 6.
    Luftl S, Archodoulaki VM, Seidler S (2006) Polym Degrad Stabil 91:464–471CrossRefGoogle Scholar
  7. 7.
    Zhao XW, Ye L (2011) Mater Sci Eng, A 528:4585–4591CrossRefGoogle Scholar
  8. 8.
    Luftl S, Visakh PM, Chandran S (2014) Polyoxymethylene handbook: structure, properties, applications and their nanocomposites. Blackwell, OxfordCrossRefGoogle Scholar
  9. 9.
    Hoffmann M, Bizzarri C, Leitner W, Muller TE (2018) Catal Sci Technol 8:5594–5603CrossRefGoogle Scholar
  10. 10.
    Maiwald M, Grutzner T, Strofer E, Hasse H (2006) Anal Bioanal Chem 385:910–917PubMedCrossRefGoogle Scholar
  11. 11.
    Grutzner T, Hasse H, Lang N, Siegert M, Strofer E (2007) Chem Eng Sci 62:5613–5620CrossRefGoogle Scholar
  12. 12.
    Masamoto J, Hamanaka K, Yoshida K, Nagahara H, Kagawa K, Iwaisako T, Komaki H (2000) Angew Chem Int Ed 39:2102–2104CrossRefGoogle Scholar
  13. 13.
    Ma WT, Hu YF, Qi JG, Wei LH, Zhang XM, Yang ZY, Jiang SQ (2017) Ind Eng Chem Res 56:6910–6915CrossRefGoogle Scholar
  14. 14.
    Zhao YM, Hu YF, Qi JG, Ma WT (2016) Chin J Chem Eng 24:1392–1398CrossRefGoogle Scholar
  15. 15.
    Yin LY, Hu YF, Wang HY (2016) Petrol Sci 13:770–775CrossRefGoogle Scholar
  16. 16.
    Ishida H, Akagishi K (1996) Nippon Kagaku Kaishi, pp 290–297Google Scholar
  17. 17.
    Busca G, Lamotte J, Lavalley JC, Lorenzelli V (1987) J Am Chem Soc 109:5197–5202CrossRefGoogle Scholar
  18. 18.
    Chen MT, Lin YS, Lin YF, Lin HP, Lin JL (2004) J Catal 228:259–263CrossRefGoogle Scholar
  19. 19.
    Russell AE, Miller SP, Morken JP (2000) J Org Chem 65:8381–8383PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Stosic D, Auroux A (2013) Characterization of acid-base sites in zeolites. In: Auroux A (ed) Calorimetry and thermal methods in catalysis, vol 154. Springer, Berlin, pp 353–384CrossRefGoogle Scholar
  21. 21.
    Yi XF, Liu KY, Chen W, Li JJ, Xu ST, Li CB, Xiao Y, Liu HC, Guo XW, Liu SB, Zheng AM (2018) J Am Chem Soc 140:10764–10774PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Brus J, Kobera L, Schoefberger W, Urbanova M, Klein P, Sazama P, Tabor E, Sklenak S, Fishchuk AV, Dedecek J (2015) Angew Chem Int Ed 54:541–545Google Scholar
  23. 23.
    Yarulina I, De Wispelaere K, Bailleul S, Goetze J, Radersma M, Abou-Hamad E, Vollmer I, Goesten M, Mezari B, Hensen EJM, Martinez-Espin JS, Morten M, Mitchell S, Perez-Ramirez J, Olsbye U, Weckhuysen BM, Van Speybroeck V, Kapteijn F, Gascon J (2018) Nat Chem 10:804–812PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Sokol AA, Catlow CRA, Garces JM, Kuperman A (2000) Adv Mater 12:1801–1805CrossRefGoogle Scholar
  25. 25.
    Prodinger S, Shi H, Wang HM, Derewinski MA, Lercher JA (2018) Appl Catal B Environ 237:996–1002CrossRefGoogle Scholar
  26. 26.
    Jo C, Park W, Ryoo R (2017) Microporus Mesoporus Mater 239:19–27CrossRefGoogle Scholar
  27. 27.
    Kalvachev Y, Jaber M, Mavrodinova V, Dimitrov L, Nihtianova D, Valtchev V (2013) Microporous Mesoporous Mater 177:127–134CrossRefGoogle Scholar
  28. 28.
    Nabavi MS, Zhou M, Mouzon J, Grahn M, Hedlund J (2019) Microporous Mesoporous Mater 278:167–174CrossRefGoogle Scholar
  29. 29.
    Li JJ, Liu M, Guo XW, Dai CY, Song CS (2018) J Energy Chem 27:1225–1230CrossRefGoogle Scholar
  30. 30.
    Wu WQ, Weitz E (2014) Appl Surf Sci 316:405–415CrossRefGoogle Scholar
  31. 31.
    Losch P, Pinar AB, Willinger MG, Soukup K, Chavan S, Vincent B, Pale P, Louis B (2017) J Catal 345:11–23CrossRefGoogle Scholar
  32. 32.
    Aiello R, Crea F, Nigro E, Testa F, Mostowicz R, Fonseca A, Nagy JB (1999) Microporous Mesoporous Mater 28:241–259CrossRefGoogle Scholar
  33. 33.
    Louis B, Kiwi-Minsker L (2004) Microporous Mesoporous Mater 74:171–178CrossRefGoogle Scholar
  34. 34.
    Rodriguez-Gonzalez L, Simon U (2010) Meas Sci Technol 21(2):027003CrossRefGoogle Scholar
  35. 35.
    Jin F, Li YD (2009) Catal Today 145:101–107CrossRefGoogle Scholar
  36. 36.
    Isernia LF (2013) Mater Res Ibero-am J Mater 16:792–802Google Scholar
  37. 37.
    Qin ZX, Lakiss L, Tosheva L, Gilson JP, Vicente A, Fernandez C, Valtchev V (2014) Adv Funct Mater 24:257–264CrossRefGoogle Scholar
  38. 38.
    Chakarova K, Drenchev N, Mihaylov M, Nikolov P, Hadjiivanov K (2013) J Phys Chem C 117:5242–5248CrossRefGoogle Scholar
  39. 39.
    Bordiga S, Lamberti C, Bonino F, Travert A, Thibault-Starzyk F (2015) Chem Soc Rev 44:7262–7341PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Janiszewska E, Kowalska-Kus J, Gora-Marek K, Szymocha A, Nowinska K, Kowalak S (2019) Appl Catal A Gen 581:1–10CrossRefGoogle Scholar
  41. 41.
    Muller M, Harvey G, Prins R (2000) Microporous Mesoporous Mater 34:281–290CrossRefGoogle Scholar
  42. 42.
    Indu B, Ernst WR, Gelbaum LT (1993) Ind Eng Chem Res 32:981–985CrossRefGoogle Scholar
  43. 43.
    Oestreich D, Lautenschutz L, Arnold U, Sauer J (2017) Chem Eng Sci 163:92–104CrossRefGoogle Scholar
  44. 44.
    Sun RY, Delidovich I, Palkovits R (2019) ACS Catal 9:1298–1318CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yuling Ye
    • 1
    • 2
    • 3
  • Mengqin Yao
    • 1
    • 3
  • Honglin Chen
    • 1
    Email author
  • Xiaoming Zhang
    • 1
  1. 1.Chengdu Institute of Organic ChemistryChinese Academy of SciencesChengduPeople’s Republic of China
  2. 2.College of Chemical EngineeringSichuan University of Science & EngineeringZigongPeople’s Republic of China
  3. 3.University of Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations