Photo-sensitization of BiOCl by CuInS2 Surface Layer for Photoelectrochemical Cathode

  • Yuxia Zhang
  • Yuming DongEmail author
  • Guangli Wang
  • Pingping Jiang
  • Shuang Zhao
  • Yan Li
  • Xiuming Wu
  • Hongyan Miao
  • Ji Li
  • Jinze Lyu
  • Yan Wang
  • Yongfa Zhu


To develop and enrich the types of photocathodes, BiOCl as holes transport layer was introduced into photoelectrochemical (PEC) water splitting. The NiS/CuInS2/BiOCl photocathode was structurally, optically, and photoelectrochemically characterized. BiOCl provides a fast channel for holes transport because of its suitable valence band and conduction band position. In terms of broadening the light absorption range and improving photocurrent performance, CuInS2, NiS and BiOCl complement each other. When exposed to Xe lamps, the current density generated by integrated photocathode is approximately − 150 μA cm−2, which is under the conditions of simulated sunlight (AM1.5G), 0.5 M Na2SO4 solution and 0 V vs NHE. It also shows good stability in 20000 s. All the results reveal that BiOCl is a promising holes transfer material for the manufacture of PEC devices in the solar splitting of water.

Graphic Abstract


BiOCl Hole transport layer Photocathode 



The authors gratefully acknowledge the support from the National Natural Science Foundation of China (Grant Nos. 21676123, 21575052), the Natural Science Foundation of Jiangsu Province (Grant No. BK20161127), the Fundamental Research Funds for the Central Universities (Grant No. JUSRP51623A), Opening Foundation of Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals (Grant No. ZDSYS-KF201504) from Shandong Normal University, the National First-class Discipline Program of Food Science and Technology (Grant No. JUFSTR20180301) and MOE & SAFEA for the 111 Project (B13025).

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10562_2019_3039_MOESM1_ESM.doc (4.6 mb)
Supplementary material 1 (DOC 4734 kb)


  1. 1.
    Liu B, Li X, Gao Y, Li Z, Meng Q, Tung C, Wu L (2015) A solution-processed, mercaptoacetic acid-engineered CdSe quantum dot photocathode for efficient hydrogen production under visible light irradiation. Energy Environ Sci 8:1443–1449CrossRefGoogle Scholar
  2. 2.
    Chen H, Chen C, Chang Y, Tsai C, Liu R, Hu S, Chang W, Chen K (2010) Quantum dot monolayer sensitized zno nanowire-array photoelectrodes: true efficiency for water splitting. Angew Chem 122:6102–6105CrossRefGoogle Scholar
  3. 3.
    Wang G, Yang X, Qian F, Zhang J, Li Y (2010) Double-sided CdS and CdSe quantum dot Co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation. Nano Lett 10:1088–1092CrossRefGoogle Scholar
  4. 4.
    Robel I, Subramanian V, Kuno M, Kamat P (2006) Quantum dot solar cells. harvesting light energy with cdse nanocrystals molecularly linked to mesoscopic TiO2 films. J Am Chem Soc 128:2385–2393CrossRefGoogle Scholar
  5. 5.
    Youngblood W, Lee S, Kobayashi Y, Hernandez-Pagan E, Hoertz P, Moore T, Moore A, Gust D, Mallouk T (2009) Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell. J Am Chem Soc 131:926–927CrossRefGoogle Scholar
  6. 6.
    Li F, Fan K, Xu B, Gabrielsson E, Daniel Q, Li L, Sun L (2015) Organic dye-sensitized tandem photoelectrochemical cell for light driven total water splitting. J Am Chem Soc 137:9153–9159CrossRefGoogle Scholar
  7. 7.
    Kim H, Jang D (2016) Dislocation-driven growth of porous CdSe nanorods from CdSe·(ethylenediamine)0.5 nanorods. Nanoscale 8:403–410CrossRefGoogle Scholar
  8. 8.
    Ding Q, Meng F, English C, Caban-Acevedo M, Shearer M, Liang D, Daniel A, Hamers R, Jin S (2014) Efficient photoelectrochemical hydrogen generation using heterostructures of si and chemically exfoliated metallic MoS2. J Am Chem Soc 136:8504–8507CrossRefGoogle Scholar
  9. 9.
    Hisatomi T, Kubota J, Domen K (2014) Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Soc Rev 43:7520–7535CrossRefGoogle Scholar
  10. 10.
    Huang Z, Zhong P, Wang C, Zhang X, Zhang C (2013) Silicon nanowires/reduced graphene oxide composites for enhanced photoelectrochemical properties. ACS Appl Mater Interfaces 5:1961–1966CrossRefGoogle Scholar
  11. 11.
    Wilker M, Shinopoulos K, Brown K, Mulder D, King P, Dukovic G (2014) Electron transfer kinetics in CdS nanorod-[FeFe]-hydrogenase complexes and implications for photochemical H2 generation. J Am Chem Soc 136:4316–4324CrossRefGoogle Scholar
  12. 12.
    Suriñach C, Albero J, Stol T, Fortage J, Collom M, Deronzier A, Palomares E, Llobe A (2014) Efficient and limiting reactions in aqueous light-induced hydrogen evolution systems using molecular catalysts and quantum dots. J Am Chem Soc 136:7655–7661CrossRefGoogle Scholar
  13. 13.
    Kamat P, Christians J, Radich J (2014) Quantum dot solar cells: hole transfer as a limiting factor in boosting the photoconversion efficiency. Langmuir 30:5716–5725CrossRefGoogle Scholar
  14. 14.
    Ruberu T, Dong Y, Das A, Eisenberg R (2015) Photoelectrochemical generation of hydrogen from water using a CdSe quantum dot-sensitized photocathode. ACS Catal 5:2255–2259CrossRefGoogle Scholar
  15. 15.
    Dong Y, Chen Y, Jiang P, Wang G, Wu X, Wu R, Zhang C (2015) Efficient and Stable MoS2/CdSe/NiO photocathode for photoelectrochemical hydrogen generation from water. Chem Asian J 10:1660–1667CrossRefGoogle Scholar
  16. 16.
    Dong Y, Wu R, Jiang P, Wang G, Chen Y, Wu X, Zhang C (2015) ACS Sustain Chem Eng 3:2429–2434CrossRefGoogle Scholar
  17. 17.
    Wang G, Shu J, Dong Y, Wu X, Zhao W, Xu J, Chen H (2015) Using G-quadruplex/hemin to “switch-on” the cathodic photocurrent of p-type PbS quantum dots: toward a versatile platform for photoelectrochemical aptasensing. Anal Chem 87:2892–2900CrossRefGoogle Scholar
  18. 18.
    Steirer K, Chesin J, Widjonarko N, Berry J, Miedaner A, Ginley D, Olson D (2010) Solution deposited NiO thin-films as hole transport layers in organic photovoltaics. Org Electron 11:1414–1418CrossRefGoogle Scholar
  19. 19.
    Sun L, Qi Y, Jia C, Jin Z, Fan W (2014) Enhanced visible-light photocatalytic activity of g-C3N4/Zn2GeO4 heterojunctions with effective interfaces based on band match. Nanoscale 6:2649–2659CrossRefGoogle Scholar
  20. 20.
    Li J, Gao X, Liu B, Feng Q, Li X, Huang M, Liu Z, Zhang J, Tung C, Wu L (2016) Graphdiyne: a metal-free material as hole transfer layer to fabricate quantum dot-sensitized photocathodes for hydrogen production. J Am Chem Soc 138:3954–3957CrossRefGoogle Scholar
  21. 21.
    Wang J, Ibarra V, Barrera D, Xu L, Lee YJ, Hsu JW (2015) Solution synthesized p-type copper gallium oxide nanoplates as hole transport layer for organic photovoltaic devices. J Phys Chem Lett 6:1071–1075CrossRefGoogle Scholar
  22. 22.
    Chen F, Liu H, Bagwasi S, Shen X, Zhang J (2010) Photocatalytic study of BiOCl for degradation of organic pollutants under UV irradiation. Photochem Photobiol A 215:76CrossRefGoogle Scholar
  23. 23.
    Li T, Chen C, Zhou C, Shen Z, Jin R, Sun J (2011) New photocatalyst BiOCl/BiOI composites with highly enhanced visible light photocatalytic performances. Dalton Trans 40:6751–6758CrossRefGoogle Scholar
  24. 24.
    Lei Y, Wang G, Song S, Fan W, Zhang H (2009) Synthesis, characterization and assembly of BiOCl nanostructure and their photocatalytic properties. CrystEngComm 11:1857–1862CrossRefGoogle Scholar
  25. 25.
    Ye L, Zan L, Tian L, Peng T, Zhang J (2011) The 001 facets-dependent high photoactivity of BiOCl nanosheets. Chem Commun 47:6951–6953CrossRefGoogle Scholar
  26. 26.
    Lu X, Gu L, Wang J, Wu J, Liao P (2017) Bimetal-organic framework derived CoFe2O4/C porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction. Adv Mater 29:1604437–1604443CrossRefGoogle Scholar
  27. 27.
    Li Y, Li C, Zhang Z, Zhang Y, Sun X, Si H, Zhang J (2014) Black BiOCl with disorder surface structure prepared by Fe reduction and the enhanced photocatalytic activity. Solid State Sci 34:107–112CrossRefGoogle Scholar
  28. 28.
    Bhosale R, Agarkar S, Agrawal I, Naphade R, Ogale S (2014) Nanophase CuInS2 nanosheets/CuS composite grown by the SILAR method leads to high performance as a counter electrode in dye sensitized solar cells. RSC Adv 4:21989–21996CrossRefGoogle Scholar
  29. 29.
    Mu Q, Zhang Q, Wang H, Li Y (2012) Facile growth of vertically aligned BiOCl nanosheet arrays on conductive glass substrate with high photocatalytic properties. J Mater Chem 22:16851–16857CrossRefGoogle Scholar
  30. 30.
    Li H, Shi J, Zhao K, Zhang L (2014) Sustainable molecular oxygen activation with oxygen vacancies on the 001 facets of BiOCl nanosheets under solar light. Nanoscale 6:14168–14173CrossRefGoogle Scholar
  31. 31.
    Cheng G, Xiong J, Stadler F (2013) Facile template-free and fast refluxing synthesis of 3D desertrose-like BiOCl nanoarchitectures with superior photocatalytic activity. New J Chem 37:3207–3213CrossRefGoogle Scholar
  32. 32.
    Li Y, Cao L, Qiao L, Zhou M, Yang Y, Xiao P, Zhang Y (2014) Ni-Co sulfide nanowires on nickel foam with ultrahigh capacitance for asymmetric supercapacitors. J Mater Chem A 2:6540–6548CrossRefGoogle Scholar
  33. 33.
    Hou Y, Laursen A, Zhang J, Zhang G, Zhu Y, Wang X, Dahl S, Chorkendorff I (2013) Layered nanojunctions for hydrogen-evolution catalysis. Angew Chem 125:3709–3713CrossRefGoogle Scholar
  34. 34.
    Yang F, Kuznietsov V, Lublow M, Merschjann C, Steigert A, Klaer J, Thomas A, Niedrig T (2013) Solar hydrogen evolution using metal-free photocatalytic polymeric carbon nitride/CuInS2 composites as photocathodes. J Mater Chem A 1:6407–6415Google Scholar
  35. 35.
    Zhang H, Ding Q, He D, Liu H, Liu W, Li Z, Yang B, Zhang X, Lei L, Jin S (2016) Energy Environ Sci 9:3113–3119CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yuxia Zhang
    • 1
  • Yuming Dong
    • 1
    Email author
  • Guangli Wang
    • 1
  • Pingping Jiang
    • 1
  • Shuang Zhao
    • 1
  • Yan Li
    • 1
  • Xiuming Wu
    • 1
  • Hongyan Miao
    • 1
  • Ji Li
    • 2
  • Jinze Lyu
    • 2
  • Yan Wang
    • 2
  • Yongfa Zhu
    • 1
    • 3
  1. 1.International Joint Research Center for Photo-responsive Molecules and Materials School of Chemical and Material EngineeringJiangnan UniversityWuxiPeople’s Republic of China
  2. 2.Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil EngineeringJiangnan UniversityWuxiPeople’s Republic of China
  3. 3.Department of ChemistryTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations