Advertisement

Influence of NaBH4 Liquid Reduction Over LaCuZn Perovskite for CO2 Hydrogenation to Methanol

  • Feng LiEmail author
  • Xiaosu Dong
  • Ning Zhao
  • Fukui Xiao
Article
  • 27 Downloads

Abstract

The Cu-based perovskite shows good methanol selectivity but low CO2 conversion in CO2 hydrogenation to methanol. After treated by NaBH4 liquid reduction, perovskite LaCuZn sample (l-LCZ) is reduced partially, particle size becomes smaller and BET surface area increases. This sample (l-LCZ) was tested for CO2 hydrogenation to methanol direct without H2 reduction, and the catalytic activity of it is higher obviously than that over the catalyst LaCuZn which is reduced by H2 at 623 K for 6 h. NaBH4 liquid reduction has good influence on the perovskite properties.

Graphic Abstract

Keywords

Perovskite Copper NaBH4 CO2 hydrogenation Methanol 

Notes

Funding

This work was supported by the Key Science and Technology Program of Shanxi Province, China (Grant No. MD2014-10), and the National Natural Science Foundation of China (Grant No. 21802158).

References

  1. 1.
    Tejuca LG, Fierro JLG (1992) Properties and applications of perovskite-type oxides. Marcel Dekker, NewYorkCrossRefGoogle Scholar
  2. 2.
    Chakraborty T, Ray S (2014) Evolution of diffuse microscopic phases and magnetism in Ca, Fe co-doped BaTiO3. J Alloys Compd 610:271–275CrossRefGoogle Scholar
  3. 3.
    Katiyar RK, Misra P, Sahoo S, Morell G, Katiyar RS (2014) Enhanced photoresponse in BiFeO3/SrRuO3 heterostructure. J Alloys Compd 609:168–172CrossRefGoogle Scholar
  4. 4.
    Gao LZ, Au CT (2000) CO2 hydrogenation to methanol on a YBa2Cu3O7 catalyst. J Catal 189:1–15CrossRefGoogle Scholar
  5. 5.
    Sun XF, Komiya S, Ando Y (2003) Anomalous damping of phonon thermal transport in lightly Y- or Eu-doped La2CuO4 single crystals. Phys C 388–389:355–356CrossRefGoogle Scholar
  6. 6.
    Pẽna MA, Fierro JLG (2001) Chemical structures and performance of perovskite oxides. Chem Rev 101(7):1981–2017CrossRefGoogle Scholar
  7. 7.
    Olah GA, Goeppert A, Prakash GKS (2009) Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. J Org Chem 74:487–498CrossRefGoogle Scholar
  8. 8.
    Olah GA, Prakash GKS, Goeppert A (2011) Anthropogenic chemical carbon cycle for a sustainable future. J Am Chem Soc 133:12881–12898CrossRefGoogle Scholar
  9. 9.
    Bansode A, Urakawa A (2014) Towards full one-pass conversion of carbon dioxide to methanol and methanol-derived products. J Catal 309:66–70CrossRefGoogle Scholar
  10. 10.
    Ting KW, Toyao T, Siddiki SH, Shimizu KI (2019) Low-temperature hydrogenation of CO2 to methanol over heterogeneous TiO2-supported Re catalysts. ACS Catal 9:3685–3693CrossRefGoogle Scholar
  11. 11.
    Yoshihara J, Campbell CT (1996) Methanol synthesis and reverse water–gas shift kinetics over Cu(110) model catalysts: structural sensitivity. J Catal 161:776–782CrossRefGoogle Scholar
  12. 12.
    Natesakhawat S, Lekse JW, Baltrus JP, Ohodnicki PR, Howard BH, Deng X, Matranga C (2012) Active sites and structure–activity relationships of copper-based catalysts for carbon dioxide hydrogenation to methanol. ACS Catal 2:1667–1676CrossRefGoogle Scholar
  13. 13.
    Saito M, Fujitani T, Takeuchi M, Watanabe T (1996) Development of copper/zinc oxide-based multicomponent catalysts for methanol synthesis from carbon dioxide and hydrogen. Appl Catal A 138:311–318CrossRefGoogle Scholar
  14. 14.
    Toyir J, Ramírez de la Piscina P, Fierro JLG, Homs N (2001) Catalytic performance for CO2 conversion to methanol of gallium-promoted copper-based catalysts: influence of metallic precursors. Appl Catal B 34:255–266CrossRefGoogle Scholar
  15. 15.
    Zhan H, Li F, Gao P, Zhao N, Xiao F, Wei W, Zhong L, Sun Y (2014) Methanol synthesis from CO2 hydrogenation over La-M-Cu-Zn-O (M = Y, Ce, Mg, Zr) catalysts derived from perovskite-type precursors. J Power Sources 251:113–121CrossRefGoogle Scholar
  16. 16.
    Jia L, Gao J, Fang W, Li Q (2009) Carbon dioxide hydrogenation to methanol over the pre-reduced LaCr0.5Cu0.5O3 catalyst. Catal Commun 10:2000–2003CrossRefGoogle Scholar
  17. 17.
    Belin S, Bracey CL, Briois V, Ellis PR, Hutchings GJ, Hyde TI, Sankar G (2013) CuAu/SiO2 catalysts for the selective oxidation of propene to acrolein: the impact of catalyst preparation variables on material structure and catalytic performance. Catal Sci Technol 3:2944–2957CrossRefGoogle Scholar
  18. 18.
    Liaw BJ, Chen YZ (2001) Liquid-phase synthesis of methanol from CO2/H2 over ultrafine CuB catalysts. Appl Catal A 206:245–256CrossRefGoogle Scholar
  19. 19.
    Dong X, Li F, Zhao N, Xiao F, Wang J, Tan Y (2016) CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared by precipitation-reduction method. Appl Catal B 191:8–17CrossRefGoogle Scholar
  20. 20.
    Yuan ZL, Wang LN, Wang JH, Xia SX, Chen P, Hou ZY, Zheng XM (2011) Hydrogenolysis of glycerol over homogenously dispersed copper on solid base catalysts. Appl Catal B 101:431–440CrossRefGoogle Scholar
  21. 21.
    Yang RQ, Yu XC, Zhang Y, Li WZ, Tsubaki N (2008) A new method of low-temperature methanol synthesis on Cu/ZnO/Al2O3 catalysts from CO/CO2/H2. Fuel 87:443–450CrossRefGoogle Scholar
  22. 22.
    Li F, Zhan H, Zhao N, Xiao F (2017) CO2 hydrogenation to methanol over La-Mn-Cu-Zn-O based catalysts derived from perovskite precursors. Int J Hydrogen Energy 42:20649–20657CrossRefGoogle Scholar
  23. 23.
    Zhan H, Li F, Xin C, Zhao N, Xiao F, Wei W, Sun Y (2015) Performance of the La-Mn-Zn-Cu-O based perovskite precursors for methanol synthesis from CO2 hydrogenation. Catal Lett 145:1177–1185CrossRefGoogle Scholar
  24. 24.
    Liu J, Han C, Yang X, Gao G, Shi Q, Tong M, Liang X, Li C (2016) Methyl formate synthesis from methanol on titania supported copper catalyst under UV irradiation at ambient condition: performance and mechanism. J Catal 333:162–170CrossRefGoogle Scholar
  25. 25.
    Zhang B, Zhu Y, Ding G, Zheng H, Li Y (2012) Modification of the supported Cu/SiO2 catalyst by alkaline earth metals in the selective conversion of 1, 4-butanediol to γ-butyrolactone. Appl Catal A 443–444:191–201CrossRefGoogle Scholar
  26. 26.
    Zhu S, Gao X, Zhu Y, Zhu Y, Zheng H, Li Y (2013) Promoting effect of boron oxide on Cu/SiO2 catalyst for glycerol hydrogenolysis to 1, 2-propanediol. J Catal 303:70–79CrossRefGoogle Scholar
  27. 27.
    Maluf SS, Nascente PAP, Afonso CRM, Assaf EM (2012) Study of La2−xCaxCuO4 perovskites for the low temperature water gas shift reaction. Appl Catal A 413–414:85–93CrossRefGoogle Scholar
  28. 28.
    Zhu Y, Tan R, Yi T, Gao S, Yan C, Gao L (2000) Preparation of nanosized La2CuO4 perovskite oxide using an amorphous heteronuclear complex as a precursor at low-temperature. J. Alloys Compd 311:16–21CrossRefGoogle Scholar
  29. 29.
    Xiao P, Zhong L, Zhu J, Hong J, Li J, Li H, Zhu Y (2015) CO and soot oxidation over macroporous perovskite LaFeO3. Catal Today 258:660–667CrossRefGoogle Scholar
  30. 30.
    Rubio-Marcos F, Quesada A, García MA, Banares MA, Fierro JG, Martín-Gonzalez MS, Costa-Krämer JL, Fernández JF (2009) Some clues about the interphase reaction between ZnO and MnO2 oxides. J Solid State Chem 182:1211–1216CrossRefGoogle Scholar
  31. 31.
    Hernández WY, Tsampas MN, Zhao C, Boreave A, Bosselet F, Vernoux P (2015) La/Sr-based perovskites as soot oxidation catalysts for gasoline particulate filters. Catal Today 258:525–534CrossRefGoogle Scholar
  32. 32.
    Xiao P, Zhu J, Li H, Jiang W, Wang T, Zhu Y, Zhao Y, Li J (2014) Effect of textural structure on the catalytic performance of LaCoO3 for CO oxidation. ChemCatChem 6:1774–1781CrossRefGoogle Scholar
  33. 33.
    Lucrédio AF, Filho GT, Assaf EM (2009) Co/Mg/Al hydrotalcite-type precursor, promoted with La and Ce, studied by XPS and applied to methane steam reforming reactions. Appl Surf Sci 255:5851–5856CrossRefGoogle Scholar
  34. 34.
    Li Z, Meng M, Zha Y, Dai F, Hu T, Xie Y, Zhang J (2012) Highly efficient multifunctional dually-substituted perovskite catalysts La1−xKxCo1−yCuyO3−δ used for soot combustion, NOx storage and simultaneous NOx-soot removal. Appl Catal B 121–122:65–74CrossRefGoogle Scholar
  35. 35.
    Dupin JC, Gonbeau D, Vinatier P, Levasseur A (2000) Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys Chem Chem Phys 2:1319–1324CrossRefGoogle Scholar
  36. 36.
    Rojas ML, Fierro JLG, Tejuca LG, Bell AT (1990) Preparation and characterization of LaMn1−xCuxO3+λ perovskite oxides. J Catal 124:41–51CrossRefGoogle Scholar
  37. 37.
    Gao P, Li F, Zhan H, Zhao N, Xiao F, Wei W, Zhong L, Wang H, Sun Y (2013) Influence of Zr on the performance of Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol. J Catal 298:51–60CrossRefGoogle Scholar
  38. 38.
    Słoczyński J, Grabowski R, Kozłowska A, Olszewski P, Lachowska M, Skrzypek J, Stoch J (2003) Effect of Mg and Mn oxide additions on structural and adsorptive properties of Cu/ZnO/ZrO2 catalysts for the methanol synthesis from CO2. Appl Catal A 249:129–138CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Coal ConversionInstitute of Coal Chemistry, Chinese Academy of SciencesTaiyuanChina
  2. 2.State Key Laboratory of Mining Disaster Prevention and ControlShandong University of Science and TechnologyQingdaoChina

Personalised recommendations