Novel Hybrid Thioamide Ligand Supported Copper Nanoparticles on SBA-15: A Copper Rich Robust Nanoreactor for Green Synthesis of Triazoles and Tetrazoles in Water Medium

  • Fatemeh Pourhassan
  • Hossein EshghiEmail author


In this work, a new thioamide based ligand with reductive nature was designed for modification of mesoporous SBA-15. For this purpose, the channels of SBA-15 were modified with Tris(2-aminoethyl)amine (TAEA) groups and then reacted with S8 and phenyl acetylene to form thioamide groups via Willgerodt-Kindler reaction. This porous material proved to be an effective host for the immobilization of inexpensive Cu(II) ions. The catalytically active Cu(I) species were generated automatically due to the reductive nature of thioamide modified surface of catalyst without use of any toxic reducing agents. The well stabilized Cu(I) species into the nano-channels of SBA-15 were used for synthesis of various triazoles from sodium azide, phenyl acetylene and alkyl/benzyl halides or alkyl epoxides and various tetrazoles from sodium azide and aryl/alkyl nitriles under green mild aqueous reaction conditions. This catalytic system was used for 9 and 11 consecutive runs for synthesis of triazoles and tetrazoles, respectively.

Graphic Abstract


SBA-15 mesoporous Thioamide ligand Click reaction [3 + 2] Cycloaddition reaction Green chemistry Copper 



The authors gratefully acknowledged for partially financial support of this study by Ferdowsi University of Mashhad (Grant No: 3/41216).

Compliance with Ethical Standards

Conflict of interest

There are no conflicts to declare.

Supplementary material

10562_2019_3031_MOESM1_ESM.pdf (3.2 mb)
Supplementary material 1 (PDF 3266 kb)


  1. 1.
    Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) Angew Chem Int Ed 41(14):2596–2599CrossRefGoogle Scholar
  2. 2.
    Wang C, Ikhlef D, Kahlal S, Saillard JY, Astruc D (2016) Coord Chem Rev 316:1–20CrossRefGoogle Scholar
  3. 3.
    Hudson R, Li CJ, Moores A (2012) Green Chem 14(3):622–624CrossRefGoogle Scholar
  4. 4.
    Girard C, Önen E, Aufort M, Beauvière S, Samson E, Herscovici J (2006) Org Lett 8(8):1689–1692PubMedCrossRefGoogle Scholar
  5. 5.
    Sarkar A, Mukherjee T, Kapoor S (2008) J Phys Chem C 112(9):3334–3340CrossRefGoogle Scholar
  6. 6.
    Chassaing S, Kumarraja M, Sani Souna Sido A, Pale P, Sommer J (2007) Org Lett 9(5):883–886PubMedCrossRefGoogle Scholar
  7. 7.
    Wu P, Feldman AK, Nugent AK, Hawker CJ, Scheel A, Voit B, Pyun J, Fréchet JM, Sharpless KB, Fokin VV (2004) Angew Chem Int Ed 43(30):3928–3932CrossRefGoogle Scholar
  8. 8.
    Li L, Siebrands CC, Yang Z, Zhang L, Guse AH, Zhang L (2010) Org Biomol Chem 8(8):1843–1848PubMedCrossRefGoogle Scholar
  9. 9.
    Li P, Wang L, Zhang Y (2008) Tetrahedron 64(48):10825–10830CrossRefGoogle Scholar
  10. 10.
    Tasca E, La Sorella G, Sperni L, Strukul G, Scarso A (2015) Green Chem 17(3):1414–1422CrossRefGoogle Scholar
  11. 11.
    Candelon N, Lastécouères D, Diallo AK, Aranzaes JR, Astruc D, Vincent JM (2008) Chem Commun 6:741–743CrossRefGoogle Scholar
  12. 12.
    Worrell BT, Malik JA, Fokin VV (2013) Science 340(6131):457–460PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Lazreg F, Slawin AM, Cazin CS (2012) Organometallics 31(22):7969–7975CrossRefGoogle Scholar
  14. 14.
    Barta J, Díez-González S (2013) Molecules 18(8):8919–8928PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Bai SQ, Jiang L, Zuo JL, Hor TA (2013) Dalton Trans 42(31):11319–11326PubMedCrossRefGoogle Scholar
  16. 16.
    Mendoza-Espinosa D, Negrón-Silva GE, Ángeles-Beltrán D, Álvarez-Hernández A, Suárez-Castillo OR, Santillán R (2014) Dalton Trans 43(19):7069–7077PubMedCrossRefGoogle Scholar
  17. 17.
    Jiang L, Wang Z, Bai SQ, Hor TA (2013) Dalton Trans 42(26):9437–9443PubMedCrossRefGoogle Scholar
  18. 18.
    Lee BH, Wu CC, Fang X, Liu CW, Zhu JL (2013) Catal Lett 143(6):572–577CrossRefGoogle Scholar
  19. 19.
    Song T, Li L, Zhou W, Zheng ZJ, Deng Y, Xu Z, Xu LW (2015) Chemistry 21(2):554–558PubMedCrossRefGoogle Scholar
  20. 20.
    Chen HB, Abeyrathna N, Liao Y (2014) Tetrahedron Lett 55(48):6575–6576CrossRefGoogle Scholar
  21. 21.
    Singh DP, Allam BK, Singh KN, Singh VP (2015) J Mol Catal A 398:158–163CrossRefGoogle Scholar
  22. 22.
    Brotherton WS, Michaels HA, Simmons JT, Clark RJ, Dalal NS, Zhu L (2009) Org Lett 11(21):4954–4957PubMedCrossRefGoogle Scholar
  23. 23.
    Mohammed S, Padala AK, Dar BA, Singh B, Sreedhar B, Vishwakarma RA, Bharate SB (2012) Tetrahedron 68(39):8156–8162CrossRefGoogle Scholar
  24. 24.
    Mirjafary Z, Ahmadi L, Moradi M, Saeidian H (2015) RSC Adv 5(95):78038–78046CrossRefGoogle Scholar
  25. 25.
    Rad MN, Behrouz S, Doroodmand MM, Movahediyan A (2012) Tetrahedron 68(38):7812–7821CrossRefGoogle Scholar
  26. 26.
    Hashemi E, Beheshtiha YS, Ahmadi S, Heravi MM (2014) Trans Metal Chem 39(5):593–601CrossRefGoogle Scholar
  27. 27.
    Moghaddam FM, Ayati SE (2015) RSC Adv 5(5):3894–3902CrossRefGoogle Scholar
  28. 28.
    Xiong X, Chen H, Tang Z, Jiang Y (2014) RSC Adv 4(19):9830–9837CrossRefGoogle Scholar
  29. 29.
    Pourjavadi A, Safaie N, Hosseini SH, Bennett C (2015) Appl Organomet Chem 29(9):601–607CrossRefGoogle Scholar
  30. 30.
    Roh J, Vávrová K, Hrabálek A (2012) Eur J Org Chem 2012(31):6101–6118CrossRefGoogle Scholar
  31. 31.
    Mani P, Sharma C, Kumar S, Awasthi SK (2014) J Mol Catal A 392:150–156CrossRefGoogle Scholar
  32. 32.
    Meshram GA, Deshpande SS, Wagh PA, Vala VA (2014) Tetrahedron Lett 55(25):3557–3560CrossRefGoogle Scholar
  33. 33.
    Yakambram B, Shree AJ, Reddy LS, Satyanarayana T, Naveen P, Bandichhor R (2018) Tetrahedron Lett 59(5):445–449CrossRefGoogle Scholar
  34. 34.
    Sivaguru P, Bhuvaneswari K, Ramkumar R, Lalitha A (2014) Tetrahedron Lett 55(41):5683–5686CrossRefGoogle Scholar
  35. 35.
    Evano G, Theunissen C, Pradal A (2013) Nat Prod Rep 30(12):1467–1489PubMedCrossRefGoogle Scholar
  36. 36.
    Rutjes F, Fokin VV (eds) (2014) Click chemistry. Wiley-VCH, WeinheimGoogle Scholar
  37. 37.
    Crowley JD, McMorran DA (2012) “Click-triazole” coordination chemistry: exploiting 1, 4-disubstituted-1, 2, 3-triazoles as ligands. InClick triazoles. Springer, Berlin, pp 31–83Google Scholar
  38. 38.
    Raper ES (1994) Coord Chem Rev 129(1–2):91–156CrossRefGoogle Scholar
  39. 39.
    Sultana R, Lobana TS, Sharma R, Castineiras A, Akitsu T, Yahagi K, Aritake Y (2010) Inorg Chim Acta 363(13):3432–3441CrossRefGoogle Scholar
  40. 40.
    Mollin J, Kašpárek F, Odlerová Ž, Šindelář Z (1986) Chem Papers 40(2):239–246Google Scholar
  41. 41.
    Mirjafary Z, Ahmadi L, Moradi M, Saeidian H (2015) RSC Adv 5(95):78038–78046CrossRefGoogle Scholar
  42. 42.
    Lamei K, Eshghi H, Bakavoli M, Rounaghi SA, Esmaeili E (2017) Catal Commun 92:40–45CrossRefGoogle Scholar
  43. 43.
    Lamei K, Eshghi H, Bakavoli M, Rostamnia S (2017) Appl Organomet Chem 31(11):e3743CrossRefGoogle Scholar
  44. 44.
    Lamei K, Eshghi H, Bakavoli M, Rostamnia S (2017) Catal Lett 147(2):491–501CrossRefGoogle Scholar
  45. 45.
    Hashemi AN, Eshghi H, Lamei K (2019) Appl Organomet Chem 33(4):e4835CrossRefGoogle Scholar
  46. 46.
    Rajabzadeh M, Khalifeh R, Eshghi H, Sorouri M (2019) Catal Lett 149(4):1125–1134CrossRefGoogle Scholar
  47. 47.
    Rostamnia S, Lamei K, Pourhassan F (2014) RSC Adv 4(103):59626–59631CrossRefGoogle Scholar
  48. 48.
    Nguyen TB, Tran MQ, Ermolenko L, Al-Mourabit AT (2013) Org Lett 16(1):310–313PubMedCrossRefGoogle Scholar
  49. 49.
    Sharma P, Rathod J, Singh AP, Kumar P, Sasson Y (2018) Catal Sci Technol 8(13):3246–3259CrossRefGoogle Scholar
  50. 50.
    Sharghi H, Khalifeh R, Doroodmand MM (2009) Adv Synth Catal 351(1–2):207–218CrossRefGoogle Scholar
  51. 51.
    Mishra A, Rai P, Srivastava M, Tripathi BP, Yadav S, Singh J (2017) Catal Lett 147(10):2600–2611CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceFerdowsi University of MashhadMashhadIran

Personalised recommendations