Advertisement

Phosphotungstic Acid Supported on Magnetic Mesoporous Tantalum Pentoxide Microspheres: Efficient Heterogeneous Catalysts for Acetalization of Benzaldehyde with Ethylene Glycol

  • Caiting Feng
  • Qinlong Li
  • Panfeng Wu
  • Bin Liu
  • Huaiming Hu
  • Ganglin XueEmail author
Article
  • 7 Downloads

Abstract

In this study, magnetically-recoverable core–shell catalysts with different amount of H3PW12O40 loading [Fe3O4@C@mTa2O5-NH2-PW12 (w%)] were prepared by the application of phosphotungstic acid supported on amino group functionalized magnetic core–shell mesoporous tantalum pentoxide microspheres. The prepared samples were characterized by FT-IR, N2-adsorption–desorption isotherms, TEM, SEM, Pyridine-IR analysis, XRD and magnetism. Fe3O4@C@mTa2O5-NH2-PW12 samples present both Brönsted and Lewis acidity, large BET surface area and high magnetization. The catalytic activity was evaluated by the acetalization of different aldehydes with diols, and the results show that Fe3O4@C@mTa2O5-NH2-PW12 (14.47%) catalyst exhibits the highest catalytic activity for acetalization of aldehydes with glycols with 94.5% conversion of benzaldehyde and 99% selectivity to benzaldehyde glycol acetal at 80 °C. The catalytic activity of the catalyst for acetalization is related to its total acidity and Brönsted–Lewis acid synergy. The catalyst Fe3O4@C@mTa2O5-NH2-PW12 can be easily recovered and reused for at least 5 times without obvious decrease of catalytic activity.

Graphic Abstract

Keywords

Heteropoly acid Ta2O5 Recyclable catalysts Brönsted/Lewis acid Acetalization 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21673176).

Supplementary material

10562_2019_3029_MOESM1_ESM.pdf (486 kb)
Supplementary material 1 (PDF 486 kb)

References

  1. 1.
    Wuts PGM, Greene TW (2007) Greene’s protective groups in organic synthesis. Wiley, New YorkGoogle Scholar
  2. 2.
    Bauer K, Garbe D, Surburg H (2001) Common Fragrances and flavor materials: preparation and uses. Wiley, New YorkCrossRefGoogle Scholar
  3. 3.
    Reddy PS, Sudarsanam P, Mallesham B, Raju G, Reddy BM (2011) J Ind Eng Chem 17:377–381CrossRefGoogle Scholar
  4. 4.
    Climent MJ, Corma A, Velty A, Susarte M (2000) J Catal 196:345–351CrossRefGoogle Scholar
  5. 5.
    Tan MX, Gu LQ, Li NN, Ying JY, Zhang YG (2013) Green Chem 15:1127–1132CrossRefGoogle Scholar
  6. 6.
    Miao ZC, Xu LL, Song HL, Zhao HH, Chou LJ (2013) Catal Sci Technol 3:1942–1954CrossRefGoogle Scholar
  7. 7.
    Zhang FM, Shi J, Jin Y, Fu YH, Zhong YJ, Zhu WD (2015) Chem Eng J 259:183–190CrossRefGoogle Scholar
  8. 8.
    Dhakshinamoorthy A, Alvaro M, Garcia H (2010) Adv Synth Catal 352:3022–3030CrossRefGoogle Scholar
  9. 9.
    Sinhamahapatra A, Sutradhar N, Ghosh M, Bajaj HC, Panda AB (2011) Appl Catal A 402:87–93CrossRefGoogle Scholar
  10. 10.
    Zhao S, Jia YQ, Song YF (2014) Catal Sci Technol 4:2618–2625CrossRefGoogle Scholar
  11. 11.
    da Silva KA, Kozhevnikov IV, Gusevskaya EV (2003) J Mol Catal A 192:129–134CrossRefGoogle Scholar
  12. 12.
    de Meireles ALP, Rocha KAD, Kozhevnikov IV, Gusevskaya EV (2011) Appl Catal A 409:82–86CrossRefGoogle Scholar
  13. 13.
    Wilke TJ, Barteau MA (2019) J Catal 371:357–367CrossRefGoogle Scholar
  14. 14.
    An XQ, Tang QW, Lan HC, Liu HJ, Qu JH (2019) Appl Catal B 244:407–413CrossRefGoogle Scholar
  15. 15.
    Serafim H, Fonseca IM, Ramos AM, Vital J, Castanheiro JE (2011) Chem Eng J 178:291–296CrossRefGoogle Scholar
  16. 16.
    Kim YS, Wang F, Hickner M, Zawodzinski TA, McGrath JE (2003) J Membr Sci 212:263–282CrossRefGoogle Scholar
  17. 17.
    Obali Z, Dogu T (2008) Chem Eng J 138:548–555CrossRefGoogle Scholar
  18. 18.
    Su F, An S, Song DY, Zhang XH, Lu B, Guo YH (2014) J Mater Chem A 2:14127–14138CrossRefGoogle Scholar
  19. 19.
    Zhao PP, Zhang YY, Wang Y, Cui HY, Song F, Sun XY, Zhang LP (2018) Green Chem 20:1551–1559CrossRefGoogle Scholar
  20. 20.
    Zhang XY, Li Y, Xue LF, Wang ST, Wang XH, Jiang ZJ (2018) ACS Sustain Chem Eng 6:165–176CrossRefGoogle Scholar
  21. 21.
    Bromberg L, Hatton TA (2011) Acs Appl Mater Interfaces 3:4756–4764PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Manjunathan P, Marakatti VS, Chandra P, Kulal AB, Umbarkar SB, Ravishankar R, Shanbhag GV (2018) Catal Today 309:61–76CrossRefGoogle Scholar
  23. 23.
    Li H, Yang TT, Riisager A, Saravanamurugan S, Yang S (2017) ChemCatChem 9:1097–1104CrossRefGoogle Scholar
  24. 24.
    Yan W, Chen KK, Zhang XF, Kuang YY, Tang XJ, Han XX (2015) J Ind Eng Chem 29:185–193CrossRefGoogle Scholar
  25. 25.
    Han XX, Ouyang K, Xiong CH, Tang XJ, Chen Q, Wang KW, Liu LL, Hung CT, Liu SB (2017) Appl Catal A 543:115–124CrossRefGoogle Scholar
  26. 26.
    Mallesham B, Sudarsanam P, Reddy BM (2014) Catal Sci Technol 4:803–813CrossRefGoogle Scholar
  27. 27.
    Ohyama J, Kanao R, Ohira Y, Satsuma A (2016) Green Chem 18:676–680CrossRefGoogle Scholar
  28. 28.
    Xu LL, Wang YH, Yang X, Yu XD, Guo YH, Clark JH (2008) Green Chem 10:746–755CrossRefGoogle Scholar
  29. 29.
    Kucheryavy P, He JB, John VT, Maharjan P, Spinu L, Goloverda GZ, Kolesnichenko VL (2013) Langmuir 29:710–716PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Wang SG, Zhang ZH, Liu B, Li JL (2013) Catal Sci Technol 3:2104–2112CrossRefGoogle Scholar
  31. 31.
    Zolfagharinia S, Kolvari E, Koukabi N (2017) Catal Lett 147:1551–1566CrossRefGoogle Scholar
  32. 32.
    Amiri A, Saadati-Moshtaghin HR, Zonoz FM, Targhoo A (2017) J Chromatogr A 1483:64–70PubMedCrossRefGoogle Scholar
  33. 33.
    Kong AG, Wang P, Zhang HG, Yang F, Huang SP, Shan YK (2012) Appl Catal A 417:183–189CrossRefGoogle Scholar
  34. 34.
    Tayebee R, Amini MM, Rostamian H, Aliakbari A (2014) Dalton Trans 43:1550–1563PubMedCrossRefGoogle Scholar
  35. 35.
    Dong XB, Zhang X, Wu PF, Zhang YJ, Liu B, Hu HM, Xue GL (2016) ChemCatChem 8:3680–3687CrossRefGoogle Scholar
  36. 36.
    Duan XX, Liu Y, Zhao Q, Wang XH, Li SW (2013) Rsc Adv 3:13748–13755CrossRefGoogle Scholar
  37. 37.
    Rafiee E, Eavani S (2011) Green Chem 13:2116–2122CrossRefGoogle Scholar
  38. 38.
    Li L, Wu QY, Guo YH, Hu CW (2005) Microporous Mesoporous Mater 87:1–9CrossRefGoogle Scholar
  39. 39.
    Kumar D, Landry CC (2007) Microporous Mesoporous Mater 98:309–316CrossRefGoogle Scholar
  40. 40.
    Pezzotta C, Fleury G, Soetens M, Van der Perre S, Denayer JFM, Riant O, Gaigneaux EM (2018) J Catal 359:198–211CrossRefGoogle Scholar
  41. 41.
    Han XX, Kuang YY, Ouyang K, Kan RJ, Tang XJ, Hung CT, Liu LL, Wu PH, Liu SB (2017) J Taiwan Inst Chem E 70:23–31CrossRefGoogle Scholar
  42. 42.
    Zhang FM, Jin Y, Shi J, Zhong YJ, Zhu WD, El-Shall MS (2015) Chem Eng J 269:236–244CrossRefGoogle Scholar
  43. 43.
    Zhang WH, Liu SS, Liu P, Xu J, Xue B, Wei XY, Li YX (2016) Rsc Adv 6:41404–41409CrossRefGoogle Scholar
  44. 44.
    Deng H, Li XL, Peng Q, Wang X, Chen JP, Li YD (2005) Angew Chem 117:2842–2845CrossRefGoogle Scholar
  45. 45.
    Li Y, Wu JS, Qi DW, Xu XQ, Deng CH, Yang PY, Zhang XM (2008) Chem Commun 5:564–566CrossRefGoogle Scholar
  46. 46.
    Qi DW, Lu J, Deng CH, Zhang XM (2009) J Chromatogr A 1216:5533–5539PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Chen YY, Song GS, Dong ZL, Yi X, Chao Y, Liang C, Yang K, Cheng L, Liu Z (2017) Small 13:1602869CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Caiting Feng
    • 1
  • Qinlong Li
    • 1
  • Panfeng Wu
    • 1
  • Bin Liu
    • 1
  • Huaiming Hu
    • 1
  • Ganglin Xue
    • 1
    Email author
  1. 1.College of Chemistry & Materials ScienceNorthwest UniversityXi’anPeople’s Republic of China

Personalised recommendations