Phosphotungstic Acid Supported on Magnetic Mesoporous Tantalum Pentoxide Microspheres: Efficient Heterogeneous Catalysts for Acetalization of Benzaldehyde with Ethylene Glycol
- 7 Downloads
Abstract
In this study, magnetically-recoverable core–shell catalysts with different amount of H3PW12O40 loading [Fe3O4@C@mTa2O5-NH2-PW12 (w%)] were prepared by the application of phosphotungstic acid supported on amino group functionalized magnetic core–shell mesoporous tantalum pentoxide microspheres. The prepared samples were characterized by FT-IR, N2-adsorption–desorption isotherms, TEM, SEM, Pyridine-IR analysis, XRD and magnetism. Fe3O4@C@mTa2O5-NH2-PW12 samples present both Brönsted and Lewis acidity, large BET surface area and high magnetization. The catalytic activity was evaluated by the acetalization of different aldehydes with diols, and the results show that Fe3O4@C@mTa2O5-NH2-PW12 (14.47%) catalyst exhibits the highest catalytic activity for acetalization of aldehydes with glycols with 94.5% conversion of benzaldehyde and 99% selectivity to benzaldehyde glycol acetal at 80 °C. The catalytic activity of the catalyst for acetalization is related to its total acidity and Brönsted–Lewis acid synergy. The catalyst Fe3O4@C@mTa2O5-NH2-PW12 can be easily recovered and reused for at least 5 times without obvious decrease of catalytic activity.
Graphic Abstract
Keywords
Heteropoly acid Ta2O5 Recyclable catalysts Brönsted/Lewis acid AcetalizationNotes
Acknowledgements
This work was supported by the National Natural Science Foundation of China (21673176).
Supplementary material
References
- 1.Wuts PGM, Greene TW (2007) Greene’s protective groups in organic synthesis. Wiley, New YorkGoogle Scholar
- 2.Bauer K, Garbe D, Surburg H (2001) Common Fragrances and flavor materials: preparation and uses. Wiley, New YorkCrossRefGoogle Scholar
- 3.Reddy PS, Sudarsanam P, Mallesham B, Raju G, Reddy BM (2011) J Ind Eng Chem 17:377–381CrossRefGoogle Scholar
- 4.Climent MJ, Corma A, Velty A, Susarte M (2000) J Catal 196:345–351CrossRefGoogle Scholar
- 5.Tan MX, Gu LQ, Li NN, Ying JY, Zhang YG (2013) Green Chem 15:1127–1132CrossRefGoogle Scholar
- 6.Miao ZC, Xu LL, Song HL, Zhao HH, Chou LJ (2013) Catal Sci Technol 3:1942–1954CrossRefGoogle Scholar
- 7.Zhang FM, Shi J, Jin Y, Fu YH, Zhong YJ, Zhu WD (2015) Chem Eng J 259:183–190CrossRefGoogle Scholar
- 8.Dhakshinamoorthy A, Alvaro M, Garcia H (2010) Adv Synth Catal 352:3022–3030CrossRefGoogle Scholar
- 9.Sinhamahapatra A, Sutradhar N, Ghosh M, Bajaj HC, Panda AB (2011) Appl Catal A 402:87–93CrossRefGoogle Scholar
- 10.Zhao S, Jia YQ, Song YF (2014) Catal Sci Technol 4:2618–2625CrossRefGoogle Scholar
- 11.da Silva KA, Kozhevnikov IV, Gusevskaya EV (2003) J Mol Catal A 192:129–134CrossRefGoogle Scholar
- 12.de Meireles ALP, Rocha KAD, Kozhevnikov IV, Gusevskaya EV (2011) Appl Catal A 409:82–86CrossRefGoogle Scholar
- 13.Wilke TJ, Barteau MA (2019) J Catal 371:357–367CrossRefGoogle Scholar
- 14.An XQ, Tang QW, Lan HC, Liu HJ, Qu JH (2019) Appl Catal B 244:407–413CrossRefGoogle Scholar
- 15.Serafim H, Fonseca IM, Ramos AM, Vital J, Castanheiro JE (2011) Chem Eng J 178:291–296CrossRefGoogle Scholar
- 16.Kim YS, Wang F, Hickner M, Zawodzinski TA, McGrath JE (2003) J Membr Sci 212:263–282CrossRefGoogle Scholar
- 17.Obali Z, Dogu T (2008) Chem Eng J 138:548–555CrossRefGoogle Scholar
- 18.Su F, An S, Song DY, Zhang XH, Lu B, Guo YH (2014) J Mater Chem A 2:14127–14138CrossRefGoogle Scholar
- 19.Zhao PP, Zhang YY, Wang Y, Cui HY, Song F, Sun XY, Zhang LP (2018) Green Chem 20:1551–1559CrossRefGoogle Scholar
- 20.Zhang XY, Li Y, Xue LF, Wang ST, Wang XH, Jiang ZJ (2018) ACS Sustain Chem Eng 6:165–176CrossRefGoogle Scholar
- 21.Bromberg L, Hatton TA (2011) Acs Appl Mater Interfaces 3:4756–4764PubMedCrossRefPubMedCentralGoogle Scholar
- 22.Manjunathan P, Marakatti VS, Chandra P, Kulal AB, Umbarkar SB, Ravishankar R, Shanbhag GV (2018) Catal Today 309:61–76CrossRefGoogle Scholar
- 23.Li H, Yang TT, Riisager A, Saravanamurugan S, Yang S (2017) ChemCatChem 9:1097–1104CrossRefGoogle Scholar
- 24.Yan W, Chen KK, Zhang XF, Kuang YY, Tang XJ, Han XX (2015) J Ind Eng Chem 29:185–193CrossRefGoogle Scholar
- 25.Han XX, Ouyang K, Xiong CH, Tang XJ, Chen Q, Wang KW, Liu LL, Hung CT, Liu SB (2017) Appl Catal A 543:115–124CrossRefGoogle Scholar
- 26.Mallesham B, Sudarsanam P, Reddy BM (2014) Catal Sci Technol 4:803–813CrossRefGoogle Scholar
- 27.Ohyama J, Kanao R, Ohira Y, Satsuma A (2016) Green Chem 18:676–680CrossRefGoogle Scholar
- 28.Xu LL, Wang YH, Yang X, Yu XD, Guo YH, Clark JH (2008) Green Chem 10:746–755CrossRefGoogle Scholar
- 29.Kucheryavy P, He JB, John VT, Maharjan P, Spinu L, Goloverda GZ, Kolesnichenko VL (2013) Langmuir 29:710–716PubMedPubMedCentralCrossRefGoogle Scholar
- 30.Wang SG, Zhang ZH, Liu B, Li JL (2013) Catal Sci Technol 3:2104–2112CrossRefGoogle Scholar
- 31.Zolfagharinia S, Kolvari E, Koukabi N (2017) Catal Lett 147:1551–1566CrossRefGoogle Scholar
- 32.Amiri A, Saadati-Moshtaghin HR, Zonoz FM, Targhoo A (2017) J Chromatogr A 1483:64–70PubMedCrossRefGoogle Scholar
- 33.Kong AG, Wang P, Zhang HG, Yang F, Huang SP, Shan YK (2012) Appl Catal A 417:183–189CrossRefGoogle Scholar
- 34.Tayebee R, Amini MM, Rostamian H, Aliakbari A (2014) Dalton Trans 43:1550–1563PubMedCrossRefGoogle Scholar
- 35.Dong XB, Zhang X, Wu PF, Zhang YJ, Liu B, Hu HM, Xue GL (2016) ChemCatChem 8:3680–3687CrossRefGoogle Scholar
- 36.Duan XX, Liu Y, Zhao Q, Wang XH, Li SW (2013) Rsc Adv 3:13748–13755CrossRefGoogle Scholar
- 37.Rafiee E, Eavani S (2011) Green Chem 13:2116–2122CrossRefGoogle Scholar
- 38.Li L, Wu QY, Guo YH, Hu CW (2005) Microporous Mesoporous Mater 87:1–9CrossRefGoogle Scholar
- 39.Kumar D, Landry CC (2007) Microporous Mesoporous Mater 98:309–316CrossRefGoogle Scholar
- 40.Pezzotta C, Fleury G, Soetens M, Van der Perre S, Denayer JFM, Riant O, Gaigneaux EM (2018) J Catal 359:198–211CrossRefGoogle Scholar
- 41.Han XX, Kuang YY, Ouyang K, Kan RJ, Tang XJ, Hung CT, Liu LL, Wu PH, Liu SB (2017) J Taiwan Inst Chem E 70:23–31CrossRefGoogle Scholar
- 42.Zhang FM, Jin Y, Shi J, Zhong YJ, Zhu WD, El-Shall MS (2015) Chem Eng J 269:236–244CrossRefGoogle Scholar
- 43.Zhang WH, Liu SS, Liu P, Xu J, Xue B, Wei XY, Li YX (2016) Rsc Adv 6:41404–41409CrossRefGoogle Scholar
- 44.Deng H, Li XL, Peng Q, Wang X, Chen JP, Li YD (2005) Angew Chem 117:2842–2845CrossRefGoogle Scholar
- 45.Li Y, Wu JS, Qi DW, Xu XQ, Deng CH, Yang PY, Zhang XM (2008) Chem Commun 5:564–566CrossRefGoogle Scholar
- 46.Qi DW, Lu J, Deng CH, Zhang XM (2009) J Chromatogr A 1216:5533–5539PubMedCrossRefPubMedCentralGoogle Scholar
- 47.Chen YY, Song GS, Dong ZL, Yi X, Chao Y, Liang C, Yang K, Cheng L, Liu Z (2017) Small 13:1602869CrossRefGoogle Scholar