Advertisement

Direct Amination of Benzene with NH3 and H2O2 Over Hierarchical Fe,Cu/ZSM-5 Prepared by Post-synthesis Treatment of Nanocrystallite B–ZSM-5

  • Honglin WangEmail author
  • Zhigang Ma
  • Juanjuan Yang
Article
  • 26 Downloads

Abstract

Hierarchical Fe,Cu/ZSM-5 was prepared by post-synthesis treatment of nanocrystallite B–ZSM-5. The hierarchical MFI zeolites containing Fe and/or Cu were characterized with XRD, FT-IR, SEM, UV–Vis and N2-sorption techniques. UV–Vis and FT-IR spectroscopy demonstrated that some of the Fe and Cu cations were incorporated into the zeolite framework. Direct amination of benzene to aniline with H2O2 and NH3 was studied using a series of Fe and/or Cu doped ZSM-5 catalysts. The effect of Fe and/or Cu incorporation into ZSM-5 catalyst and crystallite size of the catalyst on the benzene conversion, product distribution and aniline selectivity in the direct amination reaction was investigated. Nanocrystallite hierarchical Fe,Cu/ZSM-5 exhibited the best catalytic oxido-amination performance (conversion of benzene was 23.7% and selectivity for aniline was 74.1%).

Graphic Abstract

Keywords

Direct amination of benzene Hierarchical zeolite Post-synthesis treatment Bimetallic Fe,Cu/ZSM-5 catalyst 

Notes

Acknowledgements

Financial support from the NSFC of China, and technical support from the Analytical and Testing Centre of Yunnan University are cordially acknowledged.

Compliance with Ethical Standards

Conflict of interest

There is no conflict of interest for each contributing author.

References

  1. 1.
    Becker J, Hölderich WF (1998) Catal Lett 54:125CrossRefGoogle Scholar
  2. 2.
    Hoffmann N, Muhler M (2005) Catal Lett 103:155CrossRefGoogle Scholar
  3. 3.
    Hagemeyer A, Borade R, Desrosiers P, Guan SH, Lowe DM, Poojary DM, Turner H, Weinberg H, Zhou XP, Armbrust R, Fengler G, Notheis U (2002) Appl Catal A 227:43CrossRefGoogle Scholar
  4. 4.
    Desrosiers P, Guan SH, Hagemeyer A, Lowe DM, Lugmair C, Poojary DM, Turner H, Weinberg H, Zhou XP, Armbrust R, Fengler G, Notheis U (2003) Catal Today 81:319CrossRefGoogle Scholar
  5. 5.
    Yuzawa H, Kumagai J, Yoshida H (2013) J Phys Chem C 117:11047CrossRefGoogle Scholar
  6. 6.
    Zheng YW, Chen B, Ye P, Feng K, Wang W, Meng QY, Wu LZ, Tung CH (2016) J Am Chem Soc 138:10080PubMedCrossRefGoogle Scholar
  7. 7.
    Kuznetsova NI, Kuznetsova LI, Detusheva LG, Likholobov VA, Pez GP, Cheng H (2000) J Mol Catal A 161:1CrossRefGoogle Scholar
  8. 8.
    Zhu LF, Guo B, Tang DY, Hu XK, Li GY, Hu CW (2007) J Catal 245:446CrossRefGoogle Scholar
  9. 9.
    Parida KM, Dash SS, Singha S (2008) Appl Catal A 351:59CrossRefGoogle Scholar
  10. 10.
    Lu YF, Zhu LF, Liu QY, Guo B, Hu XK, Hu CW (2009) Chin Chem Lett 20:238CrossRefGoogle Scholar
  11. 11.
    Parida KM, Rath D, Dash SS (2010) J Mol Catal A 318:85CrossRefGoogle Scholar
  12. 12.
    Tang DY, Zhu LF, Hu CW (2011) Organometallics 30:5675CrossRefGoogle Scholar
  13. 13.
    Singha S, Parida KM (2011) Catal Sci Technol 1:1496CrossRefGoogle Scholar
  14. 14.
    Hu CW, Zhu LF, Xia YS (2007) Ind Eng Chem Res 46:3443CrossRefGoogle Scholar
  15. 15.
    Yu TH, Yang RG, Xia S, Li GY, Hu CW (2014) Catal Sci Technol 4:3159CrossRefGoogle Scholar
  16. 16.
    Yu TH, Zhang Q, Xia S, Li GY, Hu CW (2014) Catal Sci Technol 4:639CrossRefGoogle Scholar
  17. 17.
    Chen T, Fu ZJ, Zhu LF, Hu CW, Tian A (2003) Acta Chim Sinica 61:1701Google Scholar
  18. 18.
    Xia YS, Zhu LF, Li GY, Hu CW (2005) Acta Phys Chim Sin 21:1337Google Scholar
  19. 19.
    Guo B, Zhang Q, Li GY, Yao JY, Hu CW (2012) Green Chem 14:1880CrossRefGoogle Scholar
  20. 20.
    Nan M, Luo YC, Li GY, Hu CW (2017) RSC Adv 7:21974CrossRefGoogle Scholar
  21. 21.
    Panov GI, Sobolev VI, Kharitonov AS (1990) J Mol Catal 61:85CrossRefGoogle Scholar
  22. 22.
    Yoshizawa K, Shiota Y, Kamachi T (2003) J Phys Chem B 107:11404CrossRefGoogle Scholar
  23. 23.
    Xin HC, Koekkoek A, Yang QH, van Santen R, Li C, Hensen EJM (2009) Chem Commun.  https://doi.org/10.1039/B917038C CrossRefGoogle Scholar
  24. 24.
    Rana BS, Singh B, Kumar R, Verma D, Bhunia MK, Bhaumik A, Sinha AK (2010) J Mater Chem 20:8575CrossRefGoogle Scholar
  25. 25.
    Yang ZW, Yang G, Liu XC, Han XW (2013) Catal Lett 143:260CrossRefGoogle Scholar
  26. 26.
    Li LL, Meng QL, Wen JJ, Wang JG, Tu GM, Xu CH, Zhang FM, Zhong YJ, Zhu WD, Xiao Q (2016) Microporous Mesop Mater 227:252CrossRefGoogle Scholar
  27. 27.
    Meng LQ, Zhu XC, Hensen EJM (2017) ACS Catal 7:2709PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Joyner R, Stockenhuber M (1999) J Phys Chem B 103:5963CrossRefGoogle Scholar
  29. 29.
    Qi GS, Yang RT (2005) Catal Lett 100:243CrossRefGoogle Scholar
  30. 30.
    Lai SS, She Y, Zhan WC, Guo Y, Guo YL, Wang L, Lu GZ (2016) J Mol Catal 424:232CrossRefGoogle Scholar
  31. 31.
    Shishkin A, Carlsson PA, Härelind H, Skoglundh M (2013) Top Catal 56:567CrossRefGoogle Scholar
  32. 32.
    Du TY, Qu HX, Liu Q, Zhong Q, Ma WH (2015) Chem Eng J 262:1199CrossRefGoogle Scholar
  33. 33.
    Ellmers I, Pérez Vélez R, Bentrup U, Schwieger W, Brückner A, Grünert W (2015) Catal Today 258:337CrossRefGoogle Scholar
  34. 34.
    Chen P, Rauch D, Weide P, Schönebaum S, Simons T, Muhler M, Moos R, Simon U (2016) Catal Sci Technol 6:3362CrossRefGoogle Scholar
  35. 35.
    Chi B, Qu HX, Xing X, Zhong Q (2017) J Alloys Compd 726:906CrossRefGoogle Scholar
  36. 36.
    Yuan E, Wu GJ, Dai WL, Guan NJ, Li LD (2017) Catal Sci Technol 7:3036CrossRefGoogle Scholar
  37. 37.
    Jouini H, Mejri I, Petitto C, Martinez-Ortigosa J, Vidal-Moya A, Mhamdi M, Blasco T, Delahay G (2018) Microporous Mesop Mater 260:217CrossRefGoogle Scholar
  38. 38.
    Forde MM, Armstrong RD, McVicker R, Wells PP, Dimitratos N, He Q, Lu L, Jenkins RL, Hammond C, Lopez-Sanchez JA, Kiely CJ, Hutchings GJ (2014) Chem Sci 5:3603CrossRefGoogle Scholar
  39. 39.
    Kalamaras C, Palomas D, Bos R, Horton A, Crimmin M, Hellgardt K (2016) Catal Lett 146:483CrossRefGoogle Scholar
  40. 40.
    Peneau V, Shaw G, Armstrong RD, Jenkins RL, Dimitratos N, Taylor SH, Zanthoff HW, Peitz S, Stochniol G, Hutchings GJ (2016) Catal Sci Technol 6:7521CrossRefGoogle Scholar
  41. 41.
    Jiang SS, Zhang HP, Yan Y, Zhang XY (2015) RSC Adv 5:41269CrossRefGoogle Scholar
  42. 42.
    Taran OP, Zagoruiko AN, Ayusheev AB, Yashnik SA, Prihod’ko RV, Ismagilov ZR, Goncharuk VV, Parmon VN (2015) Res Chem Intermed 41:9521CrossRefGoogle Scholar
  43. 43.
    Ahmad W, Ahmad I, Yaseen M (2016) Korean J Chem Eng 33:2530CrossRefGoogle Scholar
  44. 44.
    Yaripour F, Shariatinia Z, Sahebdelfar S, Irandoukht A (2015) Microporous Mesop Mater 203:41CrossRefGoogle Scholar
  45. 45.
    Miecznikowski A, Hanuza H (1987) Zeolites 7(3):249CrossRefGoogle Scholar
  46. 46.
    Kessler H, Chézeau JM, Guth JL, Strub H, Coudurier G (1987) Zeolites 7(4):360CrossRefGoogle Scholar
  47. 47.
    Sundaramurthy V, Lingappan N (2000) J Mol Catal A 160:367CrossRefGoogle Scholar
  48. 48.
    Dong WY, Sun YJ, He HY, Long YC (1999) Microporous Mesop Mater 32:93CrossRefGoogle Scholar
  49. 49.
    Andas J, Adam F, Rahman IA (2013) Appl Surf Sci 284:503CrossRefGoogle Scholar
  50. 50.
    Bordiga S, Buzzoni R, Geobaldo F, Lamberti C, Giamello E, Zecchina A, Leofanti G, Petrini G, Tozzola G, Vlaic G (1996) J Catal 158:486CrossRefGoogle Scholar
  51. 51.
    Guo QH, Chen BH, Li YX, Li JW (2008) Catal Lett 120:65CrossRefGoogle Scholar
  52. 52.
    Romero-Sáez M, Divakar D, Aranzabal A, González-Velasco JR, González-Marcos JA (2016) Appl Catal B 180:210CrossRefGoogle Scholar
  53. 53.
    Sun KJ, Fan FT, Xia HA, Feng ZC, Li WX, Li C (2008) J Phys Chem C 112:16036CrossRefGoogle Scholar
  54. 54.
    Hammond C, Forde MM, Ab Rahim MH, Thetford A, He Q, Jenkins RL, Dimitratos N, Lopez-Sanchez JA, Dummer NF, Murphy DM, Carley AF, Taylor SH, Willock DJ, Stangland EE, Kang J, Hagen H, Kiely CJ, Hutchings GJ (2012) Angew Chem Int Ed 51:5129CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of ChemistryYunnan UniversityKunmingChina

Personalised recommendations