Advertisement

Synthesis and Characterization of Cu-MOF Derived Cu@AC Electrocatalyst for Oxygen Reduction Reaction in PEMFC

  • Syed Aun M. Rizvi
  • Naseem IqbalEmail author
  • Muhammad Daarain Haider
  • Tayyaba Noor
  • Rehan Anwar
  • Saadia Hanif
Article
  • 45 Downloads

Abstract

In this study, biomass derived activated carbon (AC) was utilized to enhance the electrochemical properties of copper benzene-1, 3, 5-tricarboxylate metal organic framework (Cu-BTC MOF). Dried leaves (Lantana) were activated with phosphoric acid (H3PO4) for preparation of AC. Cu-MOF was pyrolyzed with different ratios of AC (1:1) under a reduction atmosphere of mixture of argon and hydrogen gases (90:10) in a tube furnace. These freshly produced composite materials were examined by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy and thermal gravimetric analysis. The synthesized catalysts were tested for its electro catalytic activity for oxidation reduction reaction (ORR) in three electrode system by cyclic voltammetry, Tafel polarization and electrochemical impedance spectroscopy. The electrochemical parameters calculated by film coated glassy carbon electrode exhibit impact of activated carbon on oxidation reduction reaction catalyzed by Cu-BTC MOF. The composite Cu@AC (1:1) reported the highest current density of 2.11 mA cm−2 at 0.9 V potential with a scan rate of 50 mV s−1 in 0.1 M KOH which is better than commercial grade Pt/C having highest current density of 1.37 mA cm−2 at 0.86 V potential. The electrochemical activity and intensified constancy is due to synergistic influence of MOF and AC-composite.

Graphic Abstract

Keywords

Activated carbon Cu@AC Cu-MOF Electrocatalyst Metal organic framework (MOF) Oxygen reduction reaction (ORR) Polymer electrolyte membrane fuel cell (PEMFC) 

Notes

Acknowledgements

This work is supported by U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E) at National University of Sciences and Technology (NUST).

References

  1. 1.
    Rostami R, Khoshnava SM, Lamit H, Streimikiene D, Mardani A (2017) Renew Sustain Energy Rev 76:1440–1464CrossRefGoogle Scholar
  2. 2.
    Henriques I, Sadorsky P (2017) Glob Financ J 38:30–44CrossRefGoogle Scholar
  3. 3.
    Huang Y, Surawski NC, Organ B, Zhou JL, Tang OHH, Chan EFC (2019) Sci Total Environ 659:275–282PubMedCrossRefGoogle Scholar
  4. 4.
    James B (2018) U.S. Dep. ENERGY, Off. ENERGY Effic. Renew. ENERGYGoogle Scholar
  5. 5.
    Arshad A, Ali HM, Habib A, Bashir MA, Jabbal M, Jabbal M (2018) Therm Sci Eng Prog.  https://doi.org/10.1016/J.TSEP.2018.12.008 CrossRefGoogle Scholar
  6. 6.
    Ren Y, Chia GH, Gao Z (2013) Nano Today 8:577–597CrossRefGoogle Scholar
  7. 7.
    Strahl S, Costa-Castelló R (2017) IFAC-PapersOnLine 50:11088–11093CrossRefGoogle Scholar
  8. 8.
    Guerrero Moreno N, Cisneros Molina M, Gervasio D, Pérez Robles JF (2015) Renew Sustain Energy Rev 52:897–906CrossRefGoogle Scholar
  9. 9.
    Majlan EH, Rohendi D, Daud WRW, Husaini T, Haque MA (2018) Renew Sustain Energy Rev 89:117–134CrossRefGoogle Scholar
  10. 10.
    Kannan AM (2017) Energy Procedia 138:14–19CrossRefGoogle Scholar
  11. 11.
    Zhang P, Sun F, Xiang Z, Shen Z, Yun J, Cao D (2014) Energy Environ Sci 7:442–450CrossRefGoogle Scholar
  12. 12.
    Xie Z, Wang Y (2019) Electrochim Acta 296:372–378CrossRefGoogle Scholar
  13. 13.
    Li Z, He H, Cao H, Sun S, Diao W, Gao D, Lu P, Zhang S, Guo Z, Li M et al (2019) Appl Catal B 240:112–121CrossRefGoogle Scholar
  14. 14.
    Li L, Xie W, Chen J, Yang J (2018) J Solid State Chem 264:1–5CrossRefGoogle Scholar
  15. 15.
    Fathabadi H (2019) Renew Energy 130:714–724CrossRefGoogle Scholar
  16. 16.
    Qiao Y, He Y, Wu S, Jiang K, Li X, Guo S, He P, Zhou H (2018) ACS Energy Lett 3:463–468CrossRefGoogle Scholar
  17. 17.
    Wu D, Guo Z, Yin X, Pang Q, Tu B, Zhang L, Wang YG, Li Q (2014) Adv Mater 26:3258–3262PubMedCrossRefGoogle Scholar
  18. 18.
    Travlou NA, Singh K, Rodríguez-Castellón E, Bandosz TJ (2015) J Mater Chem A 3:11417–11429CrossRefGoogle Scholar
  19. 19.
    Fleker O, Borenstein A, Lavi R, Benisvy L, Ruthstein S, Aurbach D (2016) Langmuir 32:4935–4944PubMedCrossRefGoogle Scholar
  20. 20.
    Xia BY, Yan Y, Li N, Bin Wu H, Lou XWD, Wang X (2016) Nat Energy 1:1–8Google Scholar
  21. 21.
    Chen C, Liu M, Rao H, Liu Y, Lin S, Sun J-K, Zhang J (2019) Appl Surf Sci 463:386–394CrossRefGoogle Scholar
  22. 22.
    Tian P, Liu D, Li K, Yang T, Wang J, Liu Y, Zhang S (2017) Bioresour Technol 244:206–212PubMedCrossRefGoogle Scholar
  23. 23.
    Shao M, Chang Q, Dodelet JP, Chenitz R (2016) Chem Rev 116:3594–3657PubMedCrossRefGoogle Scholar
  24. 24.
    Adinaveen T, Vijaya JJ, Kennedy LJ (2016) Arab J Sci Eng 41:55–65CrossRefGoogle Scholar
  25. 25.
    Wang H, Yin FX, Chen BH, He XB, Lv PL, Ye CY, Liu DJ (2017) Appl Catal B 205:55–67CrossRefGoogle Scholar
  26. 26.
    Borenstein A, Fleker O, Luski S, Benisvy L, Aurbach D (2014) J Mater Chem A 2:18132–18138CrossRefGoogle Scholar
  27. 27.
    Mehek R, Iqbal N, Noor T, Nasir H, Mehmood Y, Ahmed S (2017) Electrochim Acta 255:195–204CrossRefGoogle Scholar
  28. 28.
    Qiu K (2017) Cost-effective and durable graphene-based oxygen electrocatalysts in alkaline media. University College London, UKGoogle Scholar
  29. 29.
    Zhu Y, Kong X, Zheng H, Zhu Y (2018) Mol Catal 458:73–82CrossRefGoogle Scholar
  30. 30.
    Kumar P, Vellingiri K, Kim KH, Brown RJC, Manos MJ (2017) Microporous Mesoporous Mater 253:251–265CrossRefGoogle Scholar
  31. 31.
    Li Y, Li C, Qi H, Yu K, Liang C (2018) Chem Phys 506:10–16CrossRefGoogle Scholar
  32. 32.
    Purnomo CW, Kesuma EP, Perdana I, Aziz M (2018) Waste Manage 79:454–461CrossRefGoogle Scholar
  33. 33.
    Manoj M, Muhamed Ashraf C, Jasna M, Anilkumar KM, Jinisha B, Pradeep VS, Jayalekshmi S (2019) J Colloid Interface Sci 535:287–299PubMedCrossRefGoogle Scholar
  34. 34.
    Yakout SM, Sharaf El-Deen G (2016) Arab J Chem 9:S1155–S1162CrossRefGoogle Scholar
  35. 35.
    Anisuzzaman SM, Joseph CG, Taufiq-Yap YH, Krishnaiah D, Tay VV (2015) J King Saud Univ - Sci 27:318–330CrossRefGoogle Scholar
  36. 36.
    Liu Y, Jiang H, Hao J, Liu Y, Shen H, Li W, Li J (2017) ACS Appl Mater Interfaces 9:31841–31852PubMedCrossRefGoogle Scholar
  37. 37.
    Hou Y, Wen Z, Cui S, Ci S, Mao S, Chen J (2015) Adv Funct Mater 25:872–882CrossRefGoogle Scholar
  38. 38.
    Kiyani R, Rowshanzamir S, Parnian MJ (2016) Energy 113:1162–1173CrossRefGoogle Scholar
  39. 39.
    Zhang W, Meng S, Wang H, He Y (2018) J Phys: Conf Ser.  https://doi.org/10.1088/1742-6596/986/1/012013 CrossRefGoogle Scholar
  40. 40.
    Zhang K, Zhang Y, Wang S (2013) Sci Rep 3:1–7Google Scholar
  41. 41.
    Hossain S, Saleem J, Rahman S, Zaidi S, McKay G, Cheng C (2019) Catalysts 9:298CrossRefGoogle Scholar
  42. 42.
    Ravichandran R (2009) Fabrication and characterization of P-type CuO/n-type ZnO heterostructure gas sensors prepared by sol-gel processing techniques. Oregon State University, OregonGoogle Scholar
  43. 43.
    Sheets EJ, Yang W-C, Balow RB, Wang Y, Walker BC, Stach EA, Agrawal R (2015) J Mater Res 30:3710–3716CrossRefGoogle Scholar
  44. 44.
    Cao XT, Showkat AM, Bach LG, Jeong YT, Kim JS, Lim KT, Gal Y-S (2015) J Korean Phys Soc 66:108–112CrossRefGoogle Scholar
  45. 45.
    Panwar V, Kumar P, Bansal A, Ray SS, Jain SL (2015) Appl Catal A 498:25–31CrossRefGoogle Scholar
  46. 46.
    Mishra SK, Tripathi SN, Choudhary V, Gupta BD (2015) Plasmonics 10:1147–1157CrossRefGoogle Scholar
  47. 47.
    Kruk M, Jaroniec M (2001) Chem Mater 13:3169–3183CrossRefGoogle Scholar
  48. 48.
    Zhang XL, Jiang ZH, Yao ZP, Song Y, Wu ZD (2009) Corros Sci 51:581–587CrossRefGoogle Scholar
  49. 49.
    Ahmad R, Iqbal N, Noor T (2019) Materials. 12:2940PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Cordeiro CA, De Vries MG, Cremers TIFH, Westerink BHC (2016) Sens Actuators B 223:679–688CrossRefGoogle Scholar
  51. 51.
    Tytell BH (1975) J Electrochem Soc 262CGoogle Scholar
  52. 52.
    Hanif S, Shi X, Iqbal N, Noor T, Anwar R, Kannan AM (2019) Appl Catal B 258:17947CrossRefGoogle Scholar
  53. 53.
    Namur RS, Reyes KM, Marino CEB (2015) Mater. Res 18:91–97CrossRefGoogle Scholar
  54. 54.
    Noor T, Ammad M, Zaman N, Iqbal N, Yaqoob L, Nasir H (2015) Catal Lett.  https://doi.org/10.1007/s10562-019-02904-6 CrossRefGoogle Scholar
  55. 55.
    Sarwar E, Noor T, Iqbal N, Mehmood Y, Ahmed S, Mehek R (2018) Fuel Cells 18:189–194CrossRefGoogle Scholar
  56. 56.
    Noor T, Zaman N, Nasir H, Iqbal N, Hussain Z (2019) Electrochim Acta 307:1–12CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Syed Aun M. Rizvi
    • 1
  • Naseem Iqbal
    • 1
    Email author
  • Muhammad Daarain Haider
    • 1
  • Tayyaba Noor
    • 2
  • Rehan Anwar
    • 1
  • Saadia Hanif
    • 1
  1. 1.U.S.-Pakistan Centre for Advanced Studies in Energy (USPCAS-E)National University of Sciences and TechnologyIslamabadPakistan
  2. 2.School of Chemical and Materials Engineering (SCME)National University of Sciences and TechnologyIslamabadPakistan

Personalised recommendations