Advertisement

Cr-Doped CeO2 Nanorods for CO Oxidation: Insights into Promotional Effect of Cr on Structure and Catalytic Performance

  • Perala VenkataswamyEmail author
  • Devaiah Damma
  • Deshetti Jampaiah
  • Deboshree Mukherjee
  • Muga Vithal
  • Benjaram M. ReddyEmail author
Article
  • 27 Downloads

Abstract

Development of non-noble metal catalysts for oxidation of CO is an important subject for reducing the automotive emissions. Recently, shape-controlled synthesis of CeO2 has increasingly attracted the attention of researchers due to its size- and morphology-dependent unique properties. Following this line of thinking, herein, we successfully report the synthesis of Cr-doped CeO2 (Ce1−xCrxO2−δ; X = 0.05, 0.1, and 0.15) nanorods with various Cr contents by a facile hydrothermal method. Structural, surface, optical, and redox properties of the Cr-doped CeO2 nanorods were investigated by various techniques, namely, ICP-OES, TEM-HRTEM, FE-SEM/EDX/EDS, XRD, BET, Raman, UV–vis DRS, PL, XPS, H2-TPR, and O2-TPD. The catalytic performance was evaluated for CO oxidation. For comparison, the efficiency of Cr2O3 was also studied for CO oxidation under identical conditions. As revealed by various characterization results, the chromium ions were doped into the ceria lattice (formation of Ce–O–Cr solid solution), which enhanced the intrinsic properties such as oxygen vacancy concentration and surface area. It was found that the Cr-doped CeO2 nanorods show superior CO oxidation activity than the pristine counterparts (CeO2 nanorods and Cr2O3). The highest CO oxidation efficiency was achieved with the light-off temperature of T50 = 261 °C, when the Cr doping amount was 10% (Ce0.9Cr0.1O2−δ). A high specific surface area, more number of surface oxygen vacancies, a high concentration of Ce3+, and enhanced oxygen reducibility of Ce0.9Cr0.1O2−δ nanorods were found to be responsible for its superior catalytic performance. Further, the Ce0.9Cr0.1O2−δ nanorods exhibited a steady CO conversion over a period of 55 h investigated. The obtained results are expected to have a significant impact on the use of non-noble metal based Cr-doped CeO2 nanorods in environmental applications.

Graphic Abstract

The Cr-doped CeO2 nanorods with Ce0.9Cr0.1O2−δ composition showed enhanced CO oxidation performance at a lower temperature (~ 261 °C) than that of pristine CeO2 nanorods (338 °C) and Cr2O3 (361 °C) catalyst. This behaviour is a result of enhancement of oxygen vacancies, surface Ce3+ species, low-temperature reducibility, and high surface area.

Keywords

CeO2 nanorods Cr-doping Oxygen vacancies Low-temperature reducibility CO oxidation Structure-performance relationship 

Notes

Acknowledgements

PV is thankful to the Science and Engineering Research Board (SERB), New Delhi for financial support in the form of Research Associate (Grant No: EMR/2016/001533). MV thanks the University Grants Commission (UGC), New Delhi for BSR fellowship. BMR thanks the Department of Atomic Energy (DAE), Mumbai for the award of the Raja Ramanna Fellowship.

Compliance with Ethical Standards

Conflicts of interest

There are no conflicts to declare.

Supplementary material

10562_2019_3014_MOESM1_ESM.doc (3.4 mb)
Supplementary material 1 (DOC 3519 kb)

References

  1. 1.
    Valechha D, Suresh-Kumar M, Al-Fatesh A, Jiang H, Labhasetwar N (2019) Catal Lett 149:127–140CrossRefGoogle Scholar
  2. 2.
    Taira K, Nakao K, Suzuki K, Einaga H (2016) Environ Sci Technol 50:9773–9780PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Antonaroli S, Crociani B, Natale CD, Nardis S, Stefanelli M, Paolesse R (2015) Sens Actuator B Chem 208:334–338CrossRefGoogle Scholar
  4. 4.
    Punde SS, Tatarchuk BJ (2017) Chin J Catal 38:475–488CrossRefGoogle Scholar
  5. 5.
    Ho PH, Ambrosetti M, Groppi G, Tronconi E, Jaroszewicz J, Ospitali F, Rodríguez-Castellón E, Fornasari G, Vaccari A, Benito P (2018) Catal Sci Technol 8:4678–4689CrossRefGoogle Scholar
  6. 6.
    Körner R, Ricken M, Nölting J (1989) J Solid State Chem 78:136–147CrossRefGoogle Scholar
  7. 7.
    Li W, Zhang C, Li X, Tan P, Zhou A, Fang Q, Chen G (2018) Chin J Catal 39:1653–1663CrossRefGoogle Scholar
  8. 8.
    Devaiah D, Tsuzuki T, Aniz CU, Reddy BM (2015) Catal Lett 145:1206–1216CrossRefGoogle Scholar
  9. 9.
    Fornasiero P, Dimonte R, Rao GR, Kaspar J, Meriani S, Trovarelli A, Graziani M (1995) J Catal 151:168–177CrossRefGoogle Scholar
  10. 10.
    Puigdollers AR, Schlexer P, Tosoni S, Pacchioni G (2017) ACS Catal 7:6493–6513CrossRefGoogle Scholar
  11. 11.
    Reddy BM, Bharali P, Saikia P, Thrimurthulu G, Yamada Y, Kobayashi T (2009) Ind Eng Chem Res 48:453–462CrossRefGoogle Scholar
  12. 12.
    Reddy BM, Bharali P, Thrimurthulu G, Saikia P, Katta L, Park S-E (2008) Catal Lett 123:327–333CrossRefGoogle Scholar
  13. 13.
    Alammar T, Chow Y-K, Mudring A-V (2015) New J Chem 39:1339–1347CrossRefGoogle Scholar
  14. 14.
    Muhich CL, Blaser S, Hoes MC, Steinfeld A (2018) Int J Hydrogen Energy 43:18814–18831CrossRefGoogle Scholar
  15. 15.
    Venkataswamy P, Jampaiah D, Rao KN, Reddy BM (2014) Appl Catal A 488:1–10CrossRefGoogle Scholar
  16. 16.
    Venkataswamy P, Rao KN, Jampaiah D, Reddy BM (2015) Appl Catal B 162:122–132CrossRefGoogle Scholar
  17. 17.
    Liu H, Wei L, Yue R, Chen Y (2010) Catal Commun 11:829–833CrossRefGoogle Scholar
  18. 18.
    Singh P, Hegde MS, Gopalakrishnan J (2008) Chem Mater 20:7268–7273CrossRefGoogle Scholar
  19. 19.
    Harrison PG, Daniell W (2001) Chem Mater 13:1708–1719CrossRefGoogle Scholar
  20. 20.
    Mostrou S, Büchel R, Pratsinis SE, van Bokhoven JA (2017) Appl Catal A 537:40–49CrossRefGoogle Scholar
  21. 21.
    Wu J, Zeng L, Cheng D, Chen F, Zhan X, Gong J (2016) Chin J Catal 37:83–90CrossRefGoogle Scholar
  22. 22.
    Li H, Dong Q, Li Y, Guo T, Zhang J (2018) React Kinet Mech Catal 125:663–673CrossRefGoogle Scholar
  23. 23.
    Huang X-S, Sun H, Wang L-C, Liu Y-M, Fan K-N, Cao Y (2009) Appl Catal B 90:224–232CrossRefGoogle Scholar
  24. 24.
    Wu Z, Li M, Overbury SH (2012) J Catal 285:61–73CrossRefGoogle Scholar
  25. 25.
    Chen A, Zhou Y, Ta N, Li Y, Shen W (2015) Catal Sci Technol 5:4184–4192CrossRefGoogle Scholar
  26. 26.
    Zhou K, Wang X, Sun X, Peng Q, Li Y (2005) J Catal 229:206–212CrossRefGoogle Scholar
  27. 27.
    Si R, Flytzani-Stephanopoulos M (2008) Angew Chem Int Ed 47:2884–2887CrossRefGoogle Scholar
  28. 28.
    Si R, Flytzani-Stephanopoulos M (2008) Angew Chem Int Ed 120:2926–2929CrossRefGoogle Scholar
  29. 29.
    Huang X, Zhao G, Wang P, Zheng H, Dong W, Wang G (2018) Chem Cat Chem 10:1406–1413Google Scholar
  30. 30.
    López JM, Gilbank AL, García T, Solsona B, Agouram S, Torrente-Murciano L (2015) Appl Catal B 174–175:403–412CrossRefGoogle Scholar
  31. 31.
    Ta N, Liu J, Chenna S, Crozier PA, Li Y, Chen A, Shen W (2012) J Am Chem Soc 134:20585–20588PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Agarwal S, Lefferts L, Mojet BL, Ligthart DAJ, Hensen EJM, Mitchell DRG, Erasmus WJ, Anderson BG, Olivier EJ, Neethling JH, Datye AK (2013) Chem Sus Chem 6:1898–1906CrossRefGoogle Scholar
  33. 33.
    Rao BG, Jampaiah D, Venkataswamy P, Reddy BM (2016) Chem Select 1:6681–6691Google Scholar
  34. 34.
    Cullity BD, Weymouth JW (1957) Am J Phys 25:394–395CrossRefGoogle Scholar
  35. 35.
    Soni S, Chouhan N, Meena RK, Kumar S, Dalela B, Mishra M, Meena RS, Gupta G, Kumar S, Alvi PA, Dalela S (2019) Glob Chall 3:1800090–1800109PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Phokha S, Prabhakaran D, Boothroyd A, Pinitsoontorn S, Maensiri S (2014) Microelectron Eng 126:93–98CrossRefGoogle Scholar
  37. 37.
    Deshpande S, Patil S, Kuchibhatla SVNT, Seal S (2005) Appl Phys Lett 87:133113–133115CrossRefGoogle Scholar
  38. 38.
    Wang Y, Bai X, Wang F, Kang S, Yin C, Li X (2019) J Hazard Mater 372:69–76PubMedCrossRefGoogle Scholar
  39. 39.
    Li B, Raj A, Croiset E, Wen JZ (2019) Catalysts 9:805–830CrossRefGoogle Scholar
  40. 40.
    Liu X, Ding J, Lin X, Gao R, Li Z, Dai W-L (2015) Appl Catal A Gen 503:117–123CrossRefGoogle Scholar
  41. 41.
    Venkataswamy P, Jampaiah D, Mukherjee D, Aniz CU, Reddy BM (2016) Catal Lett 146:2105–2188CrossRefGoogle Scholar
  42. 42.
    Ferreira NS, Abracado LG, Macedo MA (2012) Physica B 407:3218–3221CrossRefGoogle Scholar
  43. 43.
    Jampaiah D, Reddy TS, Kandjani AE, Selvakannan PR, Sabri YM, Coyle VE, Ravi S, Bhargava SK (2016) J Mater Chem B 4:3874–3885CrossRefGoogle Scholar
  44. 44.
    Spanier JP, Robinson RD, Zhang F, Chan S-W, Herman IP (2001) Phys Rev B 64:245407–245414CrossRefGoogle Scholar
  45. 45.
    Neelapala SD, Harshini D (2018) Mater Sci Eng Technol 1:155–159Google Scholar
  46. 46.
    Zhang YW, Si R, Liao CS, Yan CH (2003) J Phys Chem B 107:10159–10167CrossRefGoogle Scholar
  47. 47.
    Atla SB, Wu M-N, Pan W, Hsiao YT, Sun A-C, Tseng M-J, Chen Y-J, Chen C-Y (2014) Mater Charact 98:202–208CrossRefGoogle Scholar
  48. 48.
    Arul NS, Mangalaraj D, Han JI (2015) J Mater Sci Mater Electron 26:1441–1448CrossRefGoogle Scholar
  49. 49.
    Ma Q, Izu N, Masuda Y (2018) ACS Appl Nano Mater 1:2112–2119CrossRefGoogle Scholar
  50. 50.
    Ansari SA, Khan MM, Ansari MO, Kalathil S, Lee J, Cho MH (2014) RSC Adv 4:16782–16791CrossRefGoogle Scholar
  51. 51.
    Barreca D, Bruno G, Gasparotto A, Losurdo M, Tondello E (2003) Mater Sci Eng C 23:1013–1016CrossRefGoogle Scholar
  52. 52.
    Bharathi RN, Shankar S (2018) J Supercond Nov Magn 31:2603–2615CrossRefGoogle Scholar
  53. 53.
    Lu XH, Huang X, Xie SL, Zheng DZ, Liu ZQ, Liang CL, Tong YX (2010) Langmuir 26:7569–7573PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Gang Y, Wang J, Liu J, Cheng X, Ma H, Wu H, Yang Z, Zhang G, Sun X (2019) Catal Lett.  https://doi.org/10.1007/s10562-019-02891-8 CrossRefGoogle Scholar
  55. 55.
    Liu P, Niu R, Li W, Wang S, Li J (2019) Catal Lett 149:1007–1016CrossRefGoogle Scholar
  56. 56.
    Paunovic N, Mitrovic ZD, Scurtu R, Askrabic S, Prekajski M, Matovic B, Popovic ZV (2012) Nanoscale 4:5469–5476PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Liu B, Li C, Zhang G, Yao X, Chuang SSC, Li Z (2018) ACS Catal 8:10446–10456CrossRefGoogle Scholar
  58. 58.
    Zhu L, Lu Y, Li F (2018) Int J Hydrogen Energy 43:13754–13763CrossRefGoogle Scholar
  59. 59.
    Jampaiah D, Venkataswamy P, Coyle VE, Reddy BM, Bhargava SK (2016) RSC Adv 6:80541–80548CrossRefGoogle Scholar
  60. 60.
    Cai W, Zhao Y, Chen M, Jiang X, Wang H, Ou M, Wan S, Zhong Q (2018) Chem Eng J 333:414–422CrossRefGoogle Scholar
  61. 61.
    Takehira K, Ohishi Y, Shishido T, Kawabata T, Takaki K, Zhang Q, Wang Y (2004) J Catal 224:404–416CrossRefGoogle Scholar
  62. 62.
    Venkataswamy P, Devaiah D, Kuntaiah K, Vithal M, Reddy BM (2017) Catal Lett 147:2028–2044CrossRefGoogle Scholar
  63. 63.
    Cao F, Zhang S, Gao W, Cao T, Qu Y (2018) Catal Sci Technol 8:3233–3237CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryOsmania UniversityHyderabadIndia
  2. 2.Chemical Engineering, College of Engineering and Applied ScienceUniversity of CincinnatiCincinnatiUSA
  3. 3.Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of ScienceRMIT UniversityMelbourneAustralia
  4. 4.Catalysis and Fine Chemicals DepartmentCSIR-Indian Institute of Chemical TechnologyHyderabadIndia

Personalised recommendations