Size Effect of Unsupported CuOx on Propylene Epoxidation by Oxygen

  • Weiguang SuEmail author
  • Yuchen Shi
  • Ce Zhang
  • Wenxin Wang
  • Xudong Song
  • Yonghui Bai
  • Jiaofei Wang
  • Guangsuo Yu


Propylene epoxidation by oxygen over Cu-based catalysts is a most ideal and economical process. The unsupported CuOx nanoparticles were synthesized by liquid phase reduction method. The crystalline phase and size of CuOx nanoparticles were characterized by XRD and TEM, respectively. The catalytic performances of CuOx with different pretreatment temperatures and atmospheres were also investigated. The as prepared unsupported CuOx nanoparticles were composed of Cu and Cu2O. With elevating the pretreatment temperatures under N2 atmosphere, the size of CuOx nanoparticles increased gradually from 25 nm to 58 nm. However, the relative content between Cu and Cu2O remained almost unchanged, indicating that the valence state of Cu species in CuOx was kept nearly constant. The C3H6 epoxidation activities showed a first increases and then decreases trend with enhancing the particle size of CuOx. The highest activity of propylene epoxidation was achieved when the particle size of CuOx was 41 nm. The conversion of propylene was 0.14% and the selectivity of propylene oxide was 30% respectively under the reaction temperature of 150 °C. The results indicated that the appropriate CuOx particle size was a key factor for propylene oxide formation on Cu-based catalysts.

Graphic Abstract

The C3H6 epoxidation activities showed a first increases and then decreases trend with enhancing the particle size of CuOx. When the CuOx particle size was 41 nm, the formation rate of PO reached maximum. The appropriate particle size of Cu species with low valence state was crucial to the generation of PO for C3H6 epoxidation reaction by O2 on Cu-based catalysts.


Propylene epoxidation Oxygen Size effect Unsupported CuOx Cu2



This work was financially supported by the National Natural Science Foundation of China (No. 21463018) and the Key Research and Development Project of Ningxia Province (The Western Light, No. 201709).


  1. 1.
    Nijhuis TA, Makkee M, Moulijn JA, Weckhuysen BM (2006) Ind Eng Chem Res 45:3447CrossRefGoogle Scholar
  2. 2.
    Bernhard M, Anton J, Schmidt F, Sandkaulen F, Pascaly M (2017) Chem unserer Zeit 51:198CrossRefGoogle Scholar
  3. 3.
    Jing XL, Wang HX, Chen HM, Huang JL, Li QB, Sun DH (2014) RSC Adv 4:27597CrossRefGoogle Scholar
  4. 4.
    Zhu L, Zhang W, Zhu JQ, Cheng DJ (2017) Appl Catal A Gen 538:27CrossRefGoogle Scholar
  5. 5.
    Özbek MO, Onal I, Van Santen RA (2011) J Catal 284:230CrossRefGoogle Scholar
  6. 6.
    Van Santen RA, Kuipers HPCE (1987) Adv Catal 35:265Google Scholar
  7. 7.
    Özbek MO, Van Santen RA (2013) Catal Lett 143:131CrossRefGoogle Scholar
  8. 8.
    Christopher P, Linic S (2010) ChemCatChem 2:78CrossRefGoogle Scholar
  9. 9.
    Christopher P, Linic S (2008) J Am Chem Soc 130:11264PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Chongterdtoonskul A, Schwank JW, Chavadej S (2012) J Mol Catal A: Chem 358:58CrossRefGoogle Scholar
  11. 11.
    Tezsevin I, Van Santen RA, Onal I (2018) Phys Chem Chem Phys 20:26681PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Monnier JR (2001) Appl Catal A Gen 221:73CrossRefGoogle Scholar
  13. 13.
    Yu B, Ayvalı T, Raine E, Li T, Li MMJ, Zheng JW, Wu S, Bagabas AA, Tsang SCE (2019) Appl Catal B Environ 243:304CrossRefGoogle Scholar
  14. 14.
    Lachkov PT, Chin YHC (2018) J Catal 366:127CrossRefGoogle Scholar
  15. 15.
    Lee EJ, Lee JW, Lee J, Min HK, Yi J, Song IK, Kim DH (2018) Catal Commun 111:80CrossRefGoogle Scholar
  16. 16.
    Dai YM, Chen ZJ, Guo YL, Lu GZ, Zhao YF, Wang HF, Hu P (2017) Phys Chem Chem Phys 19:25129PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Lei Y, Mehmood F, Lee S, Greeley J, Lee B, Seifert S, Winans RE, Elam JW, Meyer RJ, Redfern PC, Teschner D, Schlögl R, Pellin MJ, Curtiss LA, Vajda S (2010) Science 328:224PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Zhang Q, Guo YL, Zhan WC, Guo Y, Wang L, Wang YS, Lu GZ (2016) Catal Today 276:2CrossRefGoogle Scholar
  19. 19.
    Abdel Dayem HM, Al-Shihry SS, Hassan SA (2019) J Rare Earth 37:500CrossRefGoogle Scholar
  20. 20.
    Seubsai A, Kahn M, Zohour B, Noon D, Charoenpanich M, Senkan S (2015) Ind Eng Chem Res 54:2638CrossRefGoogle Scholar
  21. 21.
    Yang XF, Kattel S, Xiong K, Mudiyanselage K, Rykov S, Senanayake SD, Rodriguez JA, Liu P, Stacchiola DJ, Chen JGG (2015) Angew Chem Int Ed 54:11946CrossRefGoogle Scholar
  22. 22.
    Kizilkaya AC, Senkan S, Onal I (2010) J Mol Catal A: Chem 330:107CrossRefGoogle Scholar
  23. 23.
    Kalyoncu Ş, Düzenli D, Onal I, Seubsai A, Noon D, Senkan S (2015) Catal Commun 61:16CrossRefGoogle Scholar
  24. 24.
    Vaughan OPH, Kyriakou G, Macleod N, Tikhov M, Lambert RM (2005) J Catal 236:401CrossRefGoogle Scholar
  25. 25.
    Seubsai A, Uppala C, Tiencharoenwong P, Chukeaw T, Chareonpanich M, Zohour B, Noon D, Senkan S (2018) Catal Lett 148:586CrossRefGoogle Scholar
  26. 26.
    Marimuthu A, Zhang JW, Linic S (2013) Science 339:1590PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Sirijaraensre J, Khongpracha P, Limtrakul J (2019) Appl Surf Sci 470:755CrossRefGoogle Scholar
  28. 28.
    Wang ZY, Gao A, Chen P, Hu H, Huang QM, Chen XH (2018) J Catal 368:120CrossRefGoogle Scholar
  29. 29.
    Lai NC, Tsai MC, Liu CH, Chen CS, Yang CM (2018) J Catal 365:411CrossRefGoogle Scholar
  30. 30.
    Phon-in P, Seubsai A, Chukeaw T, Charoen K, Donphai W, Prapainainar P, Chareonpanich M, Noon D, Zohour B, Senkan S (2016) Catal Commun 86:143CrossRefGoogle Scholar
  31. 31.
    Zhang Q, Chai GT, Guo YL, Zhan WC, Guo Y, Wang L, Wang YS, Lu GZ (2016) J Mol Catal A: Chem 424:65CrossRefGoogle Scholar
  32. 32.
    Chukeaw T, Seubsai A, Phon-in P, Charoen K, Witoon T, Donphai W, Parpainainar P, Chareonpanich M, Noon D, Zohourd B, Senkand S (2016) RSC Adv 6:56116CrossRefGoogle Scholar
  33. 33.
    Seubsai A, Noon D, Chukeaw T, Zohour B, Donphai W, Chareonpanich M, Senkan S (2015) J Ind Eng Chem 32:292CrossRefGoogle Scholar
  34. 34.
    Düzenli D, Atmaca DO, Gezer MG, Onal I (2015) Appl Surf Sci 355:660CrossRefGoogle Scholar
  35. 35.
    Su WG, Wang SG, Ying PL, Feng ZC, Li C (2009) J Catal 268:165CrossRefGoogle Scholar
  36. 36.
    Hua Q, Cao T, Gu XK, Lu JQ, Jiang ZQ, Pan XR, Luo LF, Li WX, Huang WX (2014) Angew Chem Int Ed 53:4856CrossRefGoogle Scholar
  37. 37.
    Teržan J, Djinović P, Zavašnik J, Arčon I, Žerjav G, Spreitzer M, Pintar A (2018) Appl Catal B Environ 237:214CrossRefGoogle Scholar
  38. 38.
    Wu HC, Chen CS, Yang CM, Tsai MC, Lee JF (2018) ACS Appl Mater Interfaces 10:38547PubMedCrossRefGoogle Scholar
  39. 39.
    Diekmann M, Koch G, König M, Ressler T (2018) ChemCatChem 10:5459CrossRefGoogle Scholar
  40. 40.
    Zhu WM, Zhang QH, Wang Y (2008) J Phys Chem C 112:7731CrossRefGoogle Scholar
  41. 41.
    Lu JQ, Luo MF, Lei H, Bao XH, Li C (2002) J Catal 211:552CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Weiguang Su
    • 1
    • 2
    Email author
  • Yuchen Shi
    • 1
    • 2
  • Ce Zhang
    • 1
    • 2
  • Wenxin Wang
    • 1
    • 2
  • Xudong Song
    • 1
    • 2
  • Yonghui Bai
    • 1
    • 2
  • Jiaofei Wang
    • 1
    • 2
  • Guangsuo Yu
    • 1
    • 2
  1. 1.State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical EngineeringNingxia UniversityYinchuanPeople’s Republic of China
  2. 2.College of Chemistry and Chemical EngineeringNingxia UniversityYinchuanPeople’s Republic of China

Personalised recommendations