Advertisement

Ash Catalyzed Synthesis of Long-Chain Dialkyl Carbonates Through Carbonyl Exchange Reaction

  • Krishnarao LopintiEmail author
  • Meeta Sharma
  • Maya Chakradhar
  • Ajay K. Arora
  • Vivekanand Kagdiyal
  • Sanjiv K. Majumdar
Article
  • 13 Downloads

Abstract

Present work is focused on development of methodology involving utilization of cost effective, highly effective heterogeneous catalyst prepared from wood ash for carbonyl exchange reaction between long chain alcohols and diethyl carbonate to produce long-chain dialkyl carbonates. Whereas long-chain dialkyl carbonates are being explored as value added compounds as they are environmentally safe and non-corrosive in nature and useful in diesel as cetane improvers, lubricants and used in cosmetics. Thermal treatment (calcination) of wood ash was carried out at 500 and 800 °C temperatures and studied the activity of resulted catalyst towards the synthesis of long-chain dialkyl carbonates through carbonyl exchange reaction. The prepared catalyst was characterized by analytical techniques for surface morphology, crystalline phases and textural characteristics. In the present study, maximum yield of long-chain dialkyl carbonates (81%) was achieved using heterogeneous wood ash catalyst at 10 wt% of reactants and at temperature of 120 °C. The synthesized products were characterized by analytical techniques like infrared (IR), nuclear magnetic resonance (NMR), gas chromatography and mass spectroscopy respectively. Applications of prepared long-chain dialkyl carbonates in ultra low sulphur diesel (ULSD) have been explored as lubricity improvers and cetane number improvers.

Graphic Abstract

Keywords

Diethyl carbonate Wood ash Dialkyl carbonates Fuel additives 

Notes

Supplementary material

10562_2019_3004_MOESM1_ESM.docx (149 kb)
Supplementary material 1 (DOCX 150 kb)

References

  1. 1.
    Michael AP, Christopher LM (1997) Review of dimethyl carbonate (DMC) manufacture and its characteristics as a fuel additive. Energy Fuels 11:1CrossRefGoogle Scholar
  2. 2.
    Keller N, Rebmann G, Keller V (2010) Catalysts, mechanisms and industrial processes for the dimethyl carbonate synthesis. J Mol Catal A 317:1–18CrossRefGoogle Scholar
  3. 3.
    Kane DM, Iwamoto RY (1990) Union oil. US Patent 4,904,279Google Scholar
  4. 4.
    Dillon DM, Iwamoto RY (1990) Unocal. US Patent 4,891,049Google Scholar
  5. 5.
    Shouying H, Bing Y, Shengping W, Xinbin M (2015) Recent advances in dialkyl carbonates synthesis and applications. Chem Soc Rev 44:3079–3116CrossRefGoogle Scholar
  6. 6.
    Bhattacharya AK, Boulanger EM (1994) Organic carbonates as potential components of oxygenated gasoline. Preprints of the Division of Environmental Chemistry. The 208th ACS National Meeting, Washington, DC, 21–25 August 1994Google Scholar
  7. 7.
    Rounce P, Tsolakis A, Leung P, York APE (2010) A comparison of diesel and biodiesel emissions using dimethyl carbonate as an oxygenated additive. Energy Fuels 24:4812–4819CrossRefGoogle Scholar
  8. 8.
    Greco A, Rivetti F (1998) Chim Ind (Milan) 80:77Google Scholar
  9. 9.
    Shaikh AA, Sivaram S (1996) Chem Rev 96:951CrossRefGoogle Scholar
  10. 10.
    Rivetti F, Paludetto R, Romano U (1998) US Patent 5,705,673Google Scholar
  11. 11.
    Aresta M, Quaranta E (1991) Tetrahedron 47:9489CrossRefGoogle Scholar
  12. 12.
    Fisicaro G, Gerbaz G (1993) Dialkyl carbonates. In: Shubkin RL (ed) Synthetic lubricants and high-performance functional fluids. Marcel Dekker, New York, pp 229–239Google Scholar
  13. 13.
    Gryglewicz S, Oko FA, Gryglewicz G (2003) Synthesis of modern synthetic oils based on dialkyl carbonates. Ind Eng Chem Res 42:5007–5010CrossRefGoogle Scholar
  14. 14.
    Westfechtel A, Bongardt F, Ansmann A (1995) Guerbet carbonates. U.S. Patent 5,387,374Google Scholar
  15. 15.
    Ansmann A, Issberner U, Bruening S, Jackwerth B, Hoffmann D (2003) Wax-based compositions for the preparation of cosmetic tissues and wipes. WO Patent 2,003,005,981Google Scholar
  16. 16.
    Suetake T (2001) Oily solid cosmetics containing dialkyl carbonates. Japanese Patent 20,011,328,918Google Scholar
  17. 17.
    Giolito SL, Goswami JC, Weil E (1983) Carbonate esters, carbonate ester compositions, and plasticized compositions. U.S. Patent 4,403,056Google Scholar
  18. 18.
    Knothe G, Matheaus AC (2003) Ryan TW III (2003) Cetane numbers of branched and straight-chain esters determined in an ignition quality tester. Fuel 82:971–975CrossRefGoogle Scholar
  19. 19.
    Di Muzio N, Fusi C, Rivetti F, Sasselli G (1991) European Patent 460,732 (1991), to EniChem S.P.AGoogle Scholar
  20. 20.
    Khuong QV, Reinhard E, Joseph Z, Simon S, Craig MW, Eric WM (2017) Dialkyl carbonate synthesis via in situ generated carbonyl dibromide on porous glass. ACS Sustain Chem Eng 59:7492–7495Google Scholar
  21. 21.
    Babad H, Zeiler AG (1973) Chem Rev 73:75CrossRefGoogle Scholar
  22. 22.
    Saleh RY, Michaelson RC, Suciu EN, Kuhlmann B (1994) Process for manufacturing dialkyl carbonate from urea and alcohol, assigned to Exxon Chemical Patents Inc. WO Patent 95/17369Google Scholar
  23. 23.
    Anastas PT, Kirchhoff MM (2002) Origins, current status, and future challenges of green chemistry. Acc Chem Res 35:686–694CrossRefGoogle Scholar
  24. 24.
    Sakakura T, Kohno K (2009) Chem Commun.  https://doi.org/10.1039/b819997c CrossRefGoogle Scholar
  25. 25.
    Choi JCh, He LN, Yasuda H, Sakakura T (2002) Green Chem 4:230–234CrossRefGoogle Scholar
  26. 26.
    Jiang Ch, Guo Y, Wang Ch, Hu Ch, Wu Y, Wang E (2003) Wang E. Applied Catalysis A 256:203–212CrossRefGoogle Scholar
  27. 27.
    Yoshida Y, Arai Y, Kado S, Kunimori K, Tomishige K (2006) Catal Today 115:95–101CrossRefGoogle Scholar
  28. 28.
    Zhang Y, Drake IJ, Briggs DN, Bell TA (2006) J Catal 244:219–229CrossRefGoogle Scholar
  29. 29.
    Kniftn JF, Duranleau RG (1991) J Mol Catal 67:389CrossRefGoogle Scholar
  30. 30.
    Watanabe Y, Tatsumi T (1998) Microporous Mesoporous Mater 22:399CrossRefGoogle Scholar
  31. 31.
    Bhanage BM, Fujita S, Ikushima Y, Arai M (2001) Appl Catal A 219:259CrossRefGoogle Scholar
  32. 32.
    Jonge JPD, Lange J, Pello DHL (2005) US Patent 6953864 B2Google Scholar
  33. 33.
    Filippis PD, Scarsella M, Borgianni C, Pochetti F (2006) Energy Fuels 20:17CrossRefGoogle Scholar
  34. 34.
    Srivastava R, Srinivas D, Ratnasamy D (2006) J Catal 241:34CrossRefGoogle Scholar
  35. 35.
    Sankar M, Nair CM, Murty KVGK, Manikandan P (2006) Appl Catal A 312:108CrossRefGoogle Scholar
  36. 36.
    Jagtap SR, Bhor MD, Bhanage BM (2008) Catal Commun 9:1928CrossRefGoogle Scholar
  37. 37.
    Williams DBG, Sibiya MS, van Heerden PS, Kirk M, Harris RJ (2009) Mol Catal A 304:147CrossRefGoogle Scholar
  38. 38.
    Júarez R, Croma A, Gracía H (2009) Green Chem 11:989CrossRefGoogle Scholar
  39. 39.
    Murugan C, Bajaj HC, Jasra RV (2010) Catal Lett 137:224CrossRefGoogle Scholar
  40. 40.
    Murugan C, Bajaj HC (2010) Indian J Chem 49A:1182–1188Google Scholar
  41. 41.
    Kenar JA, Knothe G, Copes A (2004) LJAOCS 81(3):285–291Google Scholar
  42. 42.
    Delledonne D, Rivetti F, Romanob U (2001) Appl Catal A 221:241–251CrossRefGoogle Scholar
  43. 43.
    Pacheco MA, Marshall ChL (1997) Energy Fuels 11:2–29CrossRefGoogle Scholar
  44. 44.
    Zangeneh FT, Sahebdelfar S, Ravanchi MT (2011) J Nat Gas Chem 20:219–231CrossRefGoogle Scholar
  45. 45.
    Olanders BS (1995) Characterisation of ashes from wood and straw. Biomass Bioenergy 8:105–115CrossRefGoogle Scholar
  46. 46.
    Erich MS, Ohno T (1992) Titrimetric determination of calcium carbonate equivalence of wood ash. Analyst 117:993–995CrossRefGoogle Scholar
  47. 47.
    Sharma M, Khan AA, Puri SK, Tuli DK (2012) Biomass Bioenergy 41:94–106CrossRefGoogle Scholar
  48. 48.
    Lopinti K, Sharma M, Arora AK, Tiwari AK, Puri SK, Gupta AA (2017) US Patent 9611210 B2Google Scholar
  49. 49.
    Misra MK, Ragland KW, Baker AJ (1993) Biomass Bioenergy 4:103–106CrossRefGoogle Scholar
  50. 50.
    Lani NS, Ngadi N, Taib MR (2017) Parametric study on the transesterification reaction by using CaO/Silica catalyst. Chem Eng Trans 56:601–606Google Scholar
  51. 51.
    Kenar JA, Knothe G, Dunn RO, Ryan TW III, Matheaus A (2005) JAOCS 82(3):201–2015CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Krishnarao Lopinti
    • 1
    Email author
  • Meeta Sharma
    • 1
  • Maya Chakradhar
    • 1
  • Ajay K. Arora
    • 1
  • Vivekanand Kagdiyal
    • 1
  • Sanjiv K. Majumdar
    • 1
  1. 1.Indian Oil Corporation Ltd., R&D CentreFaridabadIndia

Personalised recommendations