Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Selective Hydrodeoxygenation of Guaiacol to Cyclohexanol Catalyzed by Nanoporous Nickel

  • 84 Accesses

Abstract

Cyclohexanol is an important feedstock in the chemical industry and the selective hydrodeoxygenation of lignin-derived guaiacol to cyclohexanol have gained increasing research attention in recent years. In this work, a series of nanoporous metal catalysts were employed for the hydrodeoxygenation of guaiacol and nanoporous Ni (NP-Ni) exhibited high catalytic performance for the preparation of cyclohexanol. With water as solvent, 100% conversion of guaiacol and over 90% selectivity to cyclohexanol were achieved at 180 °C and 2 MPa for 4 h. In order to further promote the stability of NP-Ni, induction melting, vacuum arc melting and mechanical alloying were separately employed for the preparation of NiAl precursor alloy. Mechanical alloying seemed to be an effective method for the alloying process and the as-prepared NP-Ni could keep almost stable after 10 times recycling. Furthermore, the reaction mechanism was investigated with NP-Ni for guaiacol hydrodeoxygenation. Scanning electron microscope (SEM), Brunauer–Emmett–Teller (BET) surface area analysis, X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron micrographs (TEM), energy dispersive spectrometer (EDS) and X-ray diffraction (XRD) were employed for the characterization of NiAl alloy and the optimal preparation methods of NP-Ni were acquired according to the characterization results.

Graphic Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Climent MJ, Corma A, Iborra S (2011) Chem Rev 111:1072–1133

  2. 2.

    Wu S-K, Lai P-C, Lin Y-C (2014) Catal Lett 144:878–889

  3. 3.

    Li C, Zhao X, Wang A, Huber GW, Zhang T (2015) Chem Rev 115:11559–11624

  4. 4.

    Aqsha A, Katta L, Mahinpey N (2015) Catal Lett 145:1351–1363

  5. 5.

    Palkovits R, Tajvidi K, Procelewska J, Rinaldi R, Ruppert A (2010) Green Chem 12:972–978

  6. 6.

    Mao J, Zhou J, Xia Z, Wang Z, Xu Z, Xu W, Yan P, Liu K, Guo X, Zhang ZC (2016) ACS Catal 7:695–705

  7. 7.

    El Hage R, Brosse N, Chrusciel L, Sanchez C, Sannigrahi P, Ragauskas A (2009) Polym Degrad Stab 94:1632–1638

  8. 8.

    Buranov AU, Mazza G (2008) Ind Crop Prod 28:237–259

  9. 9.

    Dongil AB, Ghampson IT, García R, Fierro JLG, Escalona N (2016) RSC Adv 6:2611–2623

  10. 10.

    Ishikawa M, Tamura M, Nakagawa Y, Tomishige K (2016) Appl Catal B 182:193–203

  11. 11.

    Lu M, Du H, Wei B, Zhu J, Li M, Shan Y, Shen J, Song C (2017) Ind Eng Chem Res 56:12070–12079

  12. 12.

    Nimmanwudipong T, Aydin C, Lu J, Runnebaum RC, Brodwater KC, Browning ND, Block DE, Gates BC (2012) Catal Lett 142:1190–1196

  13. 13.

    Qiu S, Xu Y, Weng Y, Ma L, Wang T (2016) Catalysts 6:134–148

  14. 14.

    Fang H, Zheng J, Luo X, Du J, Roldan A, Leoni S, Yuan Y (2017) Appl Catal A 529:20–31

  15. 15.

    Hong Y-K, Lee D-W, Eom H-J, Lee K-Y (2014) Appl Catal B 150–151:438–445

  16. 16.

    Wu S-K, Lai P-C, Lin Y-C, Wan H-P, Lee H-T, Chang Y-H (2013) ACS Sustain Chem Eng 1:349–358

  17. 17.

    Yang D, Wu T, Chen C, Guo W, Liu H, Han B (2017) Green Chem 19:311–318

  18. 18.

    Pal N, Pramanik M, Bhaumik A, Ali M (2014) J Mol Catal A 392:299–307

  19. 19.

    Yao W, Chen Y, Min L, Fang H, Yan Z, Wang H, Wang J (2006) J Mol Catal A 246:162–166

  20. 20.

    Liu X, Xu L, Xu G, Jia W, Ma Y, Zhang Y (2016) ACS Catal 6:7611–7620

  21. 21.

    Liu X, An W, Wang Y, Turner CH, Resasco DE (2018) Catal Sci Technol 8:2146–2158

  22. 22.

    Sun J, Karim AM, Zhang H, Kovarik L, Li XS, Hensley AJ, McEwen J-S, Wang Y (2013) J Catal 306:47–57

  23. 23.

    Zhao HY, Li D, Bui P, Oyama ST (2011) Appl Catal A 391:305–310

  24. 24.

    Hellinger M, Carvalho HWP, Baier S, Wang D, Kleist W, Grunwaldt J-D (2015) Appl Catal A 490:181–192

  25. 25.

    Zhang X, Zhang Q, Chen L, Xu Y, Wang T, Ma L (2014) Chin J Catal 35:302–309

  26. 26.

    Lee CR, Yoon JS, Suh Y-W, Choi J-W, Ha J-M, Suh DJ, Park Y-K (2012) Catal Commun 17:54–58

  27. 27.

    Feitosa LF, Berhault G, Laurenti D, Davies TE, da Silva VT (2016) J Catal 340:154–165

  28. 28.

    Zhang X, Yan P, Zhao B, Liu K, Kung MC, Kung HH, Chen S, Zhang ZC (2019) ACS Catal 9:3551–3563

  29. 29.

    Wang X, Zhu S, Wang S, He Y, Liu Y, Wang J, Fan W, Lv Y (2019) RSC Adv 9:3868–3876

  30. 30.

    Vriamont CEJJ, Chen T, Romain C, Corbett P, Manageracharath P, Peet J, Conifer CM, Hallett JP, Britovsek GJP (2019) ACS Catal 9:2345–2354

  31. 31.

    Shangguan J, Pfriem N, Chin Y-H (2019) J Catal 370:186–199

  32. 32.

    Nakagawa Y, Ishikawa M, Tamura M, Tomishige K (2014) Green Chem 16:2197–2203

  33. 33.

    Xu G-Y, Guo J-H, Qu Y-C, Zhang Y, Fu Y, Guo Q-X (2016) Green Chem 18:5510–5517

  34. 34.

    Long J, Shu S, Wu Q, Yuan Z, Wang T, Xu Y, Zhang X, Zhang Q, Ma L (2015) Energy Conv Manag 105:570–577

  35. 35.

    Zhou M, Ye J, Liu P, Xu J, Jiang J (2017) ACS Sustain Chem Eng 5:8824–8835

  36. 36.

    Roldugina EA, Naranov ER, Maximov AL, Karakhanov EA (2018) Appl Catal A 553:24–35

  37. 37.

    Fujita T, Guan P, McKenna K, Lang X, Hirata A, Zhang L, Tokunaga T, Arai S, Yamamoto Y, Tanaka N, Ishikawa Y, Asao N, Yamamoto Y, Erlebacher J, Chen M (2012) Nat Mater 11:775–780

  38. 38.

    de Castro IBD, Graça I, Rodríguez-García L, Kennema M, Rinaldi R, Meemken F (2018) Catal Sci Technol 8:3107–3114

  39. 39.

    Wang X, Rinaldi R (2012) Energy Environ Sci 5:8244–8260

  40. 40.

    Thompson ST, Lamb HH (2018) Appl Catal A 563:105–117

  41. 41.

    Han B, Bao Z, Liu T, Zhou H, Zhuang G, Zhong X, Deng S, Wang J (2017) ChemistrySelect 2:9599–9606

  42. 42.

    Escalona N, Aranzaez W, Leiva K, Martínez N, Pecchi G (2014) Appl Catal A 481:1–10

  43. 43.

    Sulman A, Mäki-Arvela P, Bomont L, Alda-Onggar M, Fedorov V, Russo V, Eränen K, Peurla M, Akhmetzyanova U, Skuhrovcová L, Tišler Z, Grénman H, Wärnå J, Murzin DY (2019) Catal Lett 149:2453–2467

Download references

Acknowledgements

This work was financially supported by the Fundamental Research Funds for the Central Universities (DUT19LK29).

Author information

Correspondence to Zeming Rong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 536 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Liu, X., Yu, G. et al. Selective Hydrodeoxygenation of Guaiacol to Cyclohexanol Catalyzed by Nanoporous Nickel. Catal Lett 150, 837–848 (2020). https://doi.org/10.1007/s10562-019-02967-5

Download citation

Keywords

  • Guaiacol
  • Cyclohexanol
  • Hydrodeoxygenation
  • Nanoporous nickel
  • Mechanical alloying