Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Theoretical Investigation on Denitrification Mechanism of Piperidine: Effects of Methylation Versus Protonation on C–N Bond Activation

  • 95 Accesses

Abstract

The denitrification mechanisms of piperidine, 2-methylpiperidine (2-MP), and 2,6-dimethylpiperidine (2,6-DMP) on MoP(001) were studied using self-consistent periodic density functional theory (DFT). These molecules located at Mo top site via the N atom and the molecular planes parallel with MoP surface. The energy barrier of the C–N bond cleavage of piperidinium (protonated piperidine) was much lower than that of the direct C–N bond cleavage of piperidine, indicating of a promoting effect of the protonation on the C–N bond cleavage, and the same trend was also found for 2-MP and 2,6-DMP. Our calculations suggested that the α-position methylation would not facilitate the hydrogenolysis pathway (protonation and subsequent C–N bond cleavage) of piperidine, in accordance with the experimental results. Both the protonation and α-position methylation could promote the C–N bond cleavage of piperidine on MoP(001), and the positive effect of protonation on C–N bond activation was more significant than that of the methylation.

Graphic Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Tian S, Li X, Wang AJ, Chen YP, Li HT, Hu YK (2018) Catal Lett 148:1579–1588

  2. 2.

    Ding SJ, Jiang SJ, Zhou YS, Wei Q, Zhou WW (2017) J Catal 345:24–38

  3. 3.

    de Souza EE, Ramalho TC, de Alencastro RB (2016) J Phys Chem C 120:4881–4894

  4. 4.

    Saito K, Kondo K, Akiyama T (2015) Org Lett 17:3366–3369

  5. 5.

    Rodriguez JA, Illas F (2012) Phys Chem Chem Phys 14:427–438

  6. 6.

    Li GX, Zhu HY, Zhao LM, Guo WY, Ma HF, Yu YC, Lu XQ (2016) J Phys Chem C 120:23009–23023

  7. 7.

    Al-Megren HA, González-Cortés SL, Xiao T, Green MLH (2007) Appl Catal A 329:36–45

  8. 8.

    Bachrach M, Marks TJ, Notestein JM (2016) ACS Catal 6:1455–1476

  9. 9.

    Zeuthen P, Knudsen KG, Whitehurst DD (2001) Catal Today 65:307–314

  10. 10.

    Gray MR (1994) Fuel Energy Abstr 36:261

  11. 11.

    Abdallah WA, Nelson AE, Gray MR (2004) Surf Sci 569:193–206

  12. 12.

    Oyama ST, Clark P, da Silva VT, Lede EJ, Requejo FG (2001) J Phys Chem B 105:4961–4966

  13. 13.

    Phillips DC, Sawhill SJ, Self R, Bussell ME (2002) J Catal 207:266–273

  14. 14.

    Oyama ST (2003) J Catal 216:343–352

  15. 15.

    Stinner C, Prins R, Weber Th (2000) J Catal 191:438–444

  16. 16.

    Bunch A, Zhang LP, Karakas G, Ozkan US (2000) Appl Catal A 190:51–60

  17. 17.

    Oyama ST, Wang X, Lee YK, Chun WJ (2004) J Catal 221:263–273

  18. 18.

    Li GX, Zhao LM, Zhu HY, Liu XP, Ma HF, Yu YC, Guo WY (2017) Phys Chem Chem Phys 19:17449–17460

  19. 19.

    Stinner C, Prins R, Weber Th (2001) J Catal 202:187–194

  20. 20.

    Ho TC (2006) Catal Rev 30:117–160

  21. 21.

    Olalde A, Perot BG (1985) Appl Catal 13:373–384

  22. 22.

    Satterfield CN, Modell M, Hites RA, Declerck CJ (1978) Ind Eng Chem Proc Des Dev 17:141–148

  23. 23.

    Kherbeche A, Hubaut R, Bonnelle JP, Grimblot J (1991) J Catal 131:204–214

  24. 24.

    Hanlon R (1987) Energy Fuels 1:424–430

  25. 25.

    Oyama ST, Lee YK (2005) J Phys Chem B 109:2109–2119

  26. 26.

    Prins R (2001) Adv Catal 46:399–464

  27. 27.

    Hadjiloizou GC, Butt JB, Dranoff JS (1992) Ind Eng Chem Res 31:2503–2516

  28. 28.

    Perot G (1991) Catal Today 10:447–472

  29. 29.

    Černý M (1982) Collect Czech Chem Commun 47:928–935

  30. 30.

    Mou J, Prins R (1995) Catal Lett 35:193–203

  31. 31.

    Jlan M, Cerda JLR, Prins R (1995) Bulletin Des Sociétés Chimiques Belges 104:225–230

  32. 32.

    Boorman PM, Kydd RA, Sorensen TS, Chong K, Lewis JM, Bell WS (1992) Fuel 71:87–93

  33. 33.

    Wang XQ, Clark P, Oyama ST (2002) J Catal 208:321–331

  34. 34.

    March J (1985) Advanced organic chemistry, 3rd edn. Wiley, New York, pp 1–70

  35. 35.

    Portefaix JL, Cattenot M, Guerriche M, Breysse M (1991) Catal Lett 9:127–132

  36. 36.

    Delley B (1990) J Chem Phys 92:508–517

  37. 37.

    Delley B (1996) J Phys Chem 100:6107–6110

  38. 38.

    Delley B (2000) J Chem Phys 113:7756–7764

  39. 39.

    Perdew JP, Yue W (1986) Phys Rev B 33:8800–8802

  40. 40.

    Perdew JP, Wang Y (1992) Phy Rev B 45:13244–13249

  41. 41.

    Perdew JP, Burke K, Wang Y (1996) Phys Rev B 54:16533–16539

  42. 42.

    Delley B (2002) Phys Rev B 66:5188–5192

  43. 43.

    Ren J, Huo CF, Wen XD, Cao Z, Wang JG, Li YW, Jiao HJ (2006) J Phys Chem B 110:22563–22569

  44. 44.

    Lundström T, Rundqvist S (1963) Acta Chem Scand 17:37–46

  45. 45.

    Winkler B, Knorr K, Hytha M, Milman V, Soto V, Avalos M (2003) J Phys Chem Solids 64:405–411

  46. 46.

    Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188–5192

  47. 47.

    Vayner E, Ball DW (2000) J Mol Struct 496:175–183

  48. 48.

    Halgren TA, Lipscomb WN (1977) Chem Phys Lett 49:225–232

  49. 49.

    Liu P, Rodriguez JA (2003) Catal Lett 91:247–252

  50. 50.

    Černý M (1979) Collect Czech Chem Commun 44:85–98

Download references

Acknowledgements

This work was supported by Natural Science Foundation of China (21776315), Natural Science Foundation of Shandong Province (ZR2017MB053), PetroChina Innovation Foundation (2016D-5007-0401, 2017D-5007-0402), and the Fundamental Research Funds for the Central Universities (17CX02031A, 19CX05001A).

Author information

Correspondence to Xiaoqing Lu or Wenyue Guo.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Li, G., Gong, Y. et al. Theoretical Investigation on Denitrification Mechanism of Piperidine: Effects of Methylation Versus Protonation on C–N Bond Activation. Catal Lett 150, 631–639 (2020). https://doi.org/10.1007/s10562-019-02960-y

Download citation

Keywords

  • Piperidine
  • Denitrification
  • C–N bond cleavage
  • MoP
  • DFT