Skip to main content
Log in

Dehydrogenative Coupling of Toluene Promoted by Multi-Walled Carbon Nanotubes

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

We report here the formation of carbon–carbon bonds via carbon-hydrogen bond activation catalysed by multi-walled carbon nanotubes (mwcnts), the catalytic activity of which is influenced by nanocarbon morphology and structure. Control of nanocarbon defects and edges allows the realisation of a high-performance carbon-based catalyst that can replace its metal-based counterparts.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The reaction produces isomeric o-, m-, and p-substituted products in a 4:1:5 ratio regardless of the conditions.

  2. MWCNTs (1 g) were placed in a ceramic container and heated in an electric furnace at 850 °C for 4 h in air. The residue (~ 1 mg) was analyzed by EDX, leading to the detection of Fe and other metals (Fig. S1).

  3. Although XPS did not show the difference before and after mCPBA treatment, thermo-gravimetric analysis (TGA) showed increased weight loss for ox-MWCNTs at 200 °C and 530 °C. Such an increased weight loss would suggest the formation of oxygenated functional groups and defects on MWCNTs. Results of TGA and zeta potential analysis of the recovered MWCNT are also shown in Fig S2 and Table S1.

  4. Products of homolytic C–C, C–O, and O–O bond cleavage of mCPBA (m-chlorobenzoic acid, benzyl m-chlorobenzoate, 3,3'-dichloro-1,1'-biphenyl) were observed in the reaction mixture. Therefore, the type of radical mainly contributing to the reaction is unclear.

References

  1. Su DS, Wen G, Wu S, Peng F, Schlögl R (2016) Angew Chem Int Ed 55:2

    Article  Google Scholar 

  2. Yu JQ, Shi Z (2010) Top Curr Chem 292:35–56

    Google Scholar 

  3. Liu C, Yuan J, Gao M, Tang S, Li W, Shi R, Lei A (2015) Chem Rev 115:12138

    Article  CAS  Google Scholar 

  4. Perea-Buceta JEPB, Wirtanen T, Laukkanen OV, Mäkelä MK, Nieger M, Melchionna M, Huittinen N, Lopez-Sanchez JA, Helaja J (2013) Angew Chem Int Ed 52(45):11835–11839

    Article  CAS  Google Scholar 

  5. Sun CL, Shi ZJ (2014) Chem Rev 114: 9219

  6. Liu X, Dai L (2016) Nat Rev Mater 1:16064

    Article  CAS  Google Scholar 

  7. Wirtanen T, Makela MK, Sarfraz J, Ihalainen P, Hietala S, Melchionna M, Helaja J (2015) Adv Synth Catal 357:3718–3726

    Article  CAS  Google Scholar 

  8. Melchionna M, Marchesan S, Prato M, Fornasiero P (2015) Catal Sci Technol 5:3859–3875

    Article  CAS  Google Scholar 

  9. Gao Y, Tang P, Zhou H, Zhang W, Yang H, Yan N, Hu G, Mei D, Wang J, Ma D (2016) Angew Chem Int Ed 55:3124

    Article  CAS  Google Scholar 

  10. Morioku K, Morimoto N, Takeuchi Y, Nishina Y (2016) Sci Rep 6:25824

    Article  Google Scholar 

  11. Prileschajew N (1909) Ber 42:4811

    Article  CAS  Google Scholar 

  12. Hoveyda AH, Evans DA, Fu GC (1983) Chem Rev 93:1307

    Article  Google Scholar 

  13. Larsen AS, Wang K, Lockwood MA, Rice GL, Won TJ, Lovell S, Sadílek M, Tureček F, Mayer JM (2002) J Am Chem Soc 124:10112

    Article  CAS  Google Scholar 

  14. Evnin AB, Lam AY (1968) Chem Commun 1968:1184

    Google Scholar 

  15. Kondo T, Tantayanon S, Tsuji Y, Watanabe Y (1989) Tetrahedron Lett 31:4137

    Article  Google Scholar 

  16. Uemura S, Tanaka S, Okano M (1976) J Chem Soc Perkin Trans 1:1966

    Article  Google Scholar 

  17. King ST (1991) J Catal 131:215

    Article  CAS  Google Scholar 

  18. Pumera M (2007) Langmuir 23:6453–6458

    Article  CAS  Google Scholar 

  19. Chen ML, Oh WC (2011) Nanoscale Res Lett 6:398

    Article  Google Scholar 

  20. Shen A, Zou Y, Wang Q, Dryfe RAW, Huang X, Dou S, Dai L, Wang S (2014) Angew Chem Int Ed 53:10804

    Article  CAS  Google Scholar 

  21. Bartlett PD (1950) Rec Prog Chem 11:47

  22. Singleton DA, Merrigan SR, Liu J, Houk KN (1997) J Am Chem Soc 119:3385

    Article  CAS  Google Scholar 

  23. Bravo A, Fontana F, Minisci F, Serri A (1996) Chem Commun 1996:1843

    Article  Google Scholar 

  24. Sheldon RA, Arends IWCE, Brink GJT, Dijksman A (2002) Acc Chem Res 35:774

    Article  CAS  Google Scholar 

  25. Cuesta A, Dhamelincourt P, Laureyns J, Alonso AM, Tascón JMD (1994) Carbon 32:1523

    Article  CAS  Google Scholar 

  26. Cristarella TC, Chinderle AJ, Hui J, Rodriguez-Lopez J (2015) Langmuir 31:3999

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge W. Chen for his contribution to XPS measurements, T. Yamazaki for his contribution to ESR measurements and H. Suzuki for his contribution to NMR. This work was financially supported by JST SICORP, ANR (ANR-15-JTIC-0002-01), and the Egyptian government.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soliman I. El-Hout or Yuta Nishina.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1015 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Hout, S.I., Zhou, Y., Kano, J. et al. Dehydrogenative Coupling of Toluene Promoted by Multi-Walled Carbon Nanotubes. Catal Lett 150, 256–262 (2020). https://doi.org/10.1007/s10562-019-02951-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02951-z

Keywords

Navigation