Advertisement

Density Functional Theory Study of the Zeolite-Catalyzed Methylation of Benzene with Methanol

  • Zhenhao WenEmail author
  • Huayu Zhu
  • Xuedong ZhuEmail author
Article
  • 62 Downloads

Abstract

The reaction coordinates based on Gibbs free energies for the methylation of benzene with methanol over HZSM-5 and Hβ, both concerted and stepwise pathway, were investigated by applying density functional theory. From the estimated adsorption energies of benzene and methanol on these zeolites, stronger guest–host interactions were observed in HZSM-5 compared to Hβ. We find that at low temperatures, the concerted mechanism dominates, however, the mechanism converts to the stepwise pathway at higher temperatures. The formation of methoxy group is found to be the rate-determining step for the stepwise pathway, and the calculated free energy barriers at 673 K were 138 kJ/mol for HZSM-5 and 149 kJ/mol for Hβ, lower than those in the concerted pathway (165 kJ/mol for HZSM-5 and 168 kJ/mol for Hβ), indicating that the stepwise pathway is kinetically favored for the methylation of benzene with methanol at 673 K. Gaseous methane can be produced via one intramolecular hydrogen transfer from the ring carbon to the carbon of methyl group in the protonated toluene species, and the calculated free energy barriers for forming methane over HZSM-5 and Hβ are 112 and 100 kJ/mol, respectively, suggesting that methane is more easily formed over 12-ring Hβ catalyst.

Graphic Abstract

The stepwise pathway is kinetically favored for the methylation of benzene with methanol compared to concerted pathway.

Keywords

Methylation of benzene Methanol conversion HZSM-5 Hβ DFT 

Notes

Acknowledgements

This work was sponsored financially by the Natural Science Foundation of Shandong Province (ZR2018LB028).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10562_2019_2931_MOESM1_ESM.pdf (1.6 mb)
Supplementary material 1 (PDF 1649 kb)

References

  1. 1.
    Odedairo T, Al-Khattaf S (2013) Comparative study of zeolite catalyzed alkylation of benzene with alcohols of different chain length: H-ZSM-5 versus mordenite. Catal Today 204:73–84CrossRefGoogle Scholar
  2. 2.
    Galadima A, Muraza O (2015) Role of zeolite catalysts for benzene removal from gasoline via alkylation: a review. Microporous Mesoporous Mater 213:169–180CrossRefGoogle Scholar
  3. 3.
    Ahn JH, Kolvenbach R, Gutiérrez OY, Al-Khattaf SS, Jentys A, Lercher JA (2015) Tailoring p-xylene selectivity in toluene methylation on medium pore-size zeolites. Microporous Mesoporous Mater 210:52–59CrossRefGoogle Scholar
  4. 4.
    Wang Q, Han W, Hu H, Lyu J, Xu X, Zhang Q, Wang H, Li X (2017) Influence of the post-treatment of HZSM-5 zeolite on catalytic performance for alkylation of benzene with methanol. Chin J Chem Eng 25:1777–1783CrossRefGoogle Scholar
  5. 5.
    Hu H, Lyu J, Rui J, Cen J, Zhang Q, Wang Q, Han W, Li X (2016) The effect of Si/Al ratio on the catalytic performance of hierarchical porous ZSM-5 for catalyzing benzene alkylation with methanol. Catal Sci Technol 6:2647–2652CrossRefGoogle Scholar
  6. 6.
    Wen Z (2016) East China University of Science and Technology, Doctor ThesisGoogle Scholar
  7. 7.
    Lyu J, Hu H, Rui J, Zhang Q, Cen J, Han W, Wang Q, Chen X, Pan Z, Li X (2017) Nitridation: a simple way to improve the catalytic performance of hierarchical porous ZSM-5 in benzene alkylation with methanol. Chin Chem Lett 28:482–486CrossRefGoogle Scholar
  8. 8.
    Lyu J, Hu H, Tait C, Rui J, Lou C, Wang Q, Han W, Zhang Q, Pan Z, Li X (2017) Benzene alkylation with methanol over phosphate modified hierarchical porous ZSM-5 with tailored acidity. Chin J Chem Eng 25:1187–1194CrossRefGoogle Scholar
  9. 9.
    Gao K, Li S, Wang L, Wang W (2015) Study of the alkylation of benzene with methanol for the selective formation of toluene and xylene over Co3O4-La2O3/ZSM-5. RSC Adv 5:45098–45105CrossRefGoogle Scholar
  10. 10.
    Hu H, Zhang Q, Cen J, Li X (2014) High suppression of the formation of ethylbenzene in benzene alkylation with methanol over ZSM-5 catalyst modified by platinum. Catal Commun 57:129–133CrossRefGoogle Scholar
  11. 11.
    Hu H, Zhang Q, Cen J, Li X (2014) Catalytic activity of Pt modified hierarchical ZSM-5 catalysts in benzene alkylation with methanol. Catal Lett 145:715–722CrossRefGoogle Scholar
  12. 12.
    Li L, Chen R, Dai J, Sun Y, Zhang Z, Li X, Nie X, Song C, Guo X (2017) Reaction mechanism of benzene methylation with methanol over H-ZSM-5 catalyst. Acta Phys-Chim Sin 33:769–779Google Scholar
  13. 13.
    De Wispelaere K, Martínez-Espín JS, Hoffmann MJ, Svelle S, Olsbye U, Bligaard T (2018) Understanding zeolite-catalyzed benzene methylation reactions by methanol and dimethyl ether at operating conditions from first principle microkinetic modeling and experiments. Catal Today 312:35–43CrossRefGoogle Scholar
  14. 14.
    Svelle S, Visur M, Olsbye U, Bjørgen M (2011) Mechanistic aspects of the zeolite catalyzed methylation of alkenes and aromatics with methanol: a review. Top Catal 54:897–906CrossRefGoogle Scholar
  15. 15.
    Van Der Mynsbrugge J, Visur M, Olsbye U, Beato P, Bjorgen M, Van Speybroeck V, Svelle S (2012) Methylation of benzene by methanol: single-site kinetics over H-ZSM-5 and H-beta zeolite catalysts. J Catal 292:201–212CrossRefGoogle Scholar
  16. 16.
    Zalazar MF, Paredes EN, Romero Ojeda GD, Cabral ND, Peruchena NM (2018) Study of confinement and catalysis effects of the reaction of methylation of benzene by methanol in H-Beta and H-ZSM-5 zeolites by topological analysis of electron density. J Phys Chem C 122:3350–3362CrossRefGoogle Scholar
  17. 17.
    Brogaard RY, Henry R, Schuurman Y, Medford AJ, Moses PG, Beato P, Svelle S, Nørskov JK, Olsbye U (2014) Methanol-to-hydrocarbons conversion: the alkene methylation pathway. J Catal 314:159–169CrossRefGoogle Scholar
  18. 18.
    Wen Z, Yang D, He X, Li Y, Zhu X (2016) Methylation of benzene with methanol over HZSM-11 and HZSM-5: a density functional theory study. J Mol Catal A 424:351–357CrossRefGoogle Scholar
  19. 19.
    Wen Z, Xia T, Liu M, Zhu K, Zhu X (2016) Methane formation mechanism in methanol to hydrocarbon process: a periodic density functional theory study. Catal Commun 75:45–49CrossRefGoogle Scholar
  20. 20.
    Wen Z, Yang D, Yang F, Wei Z, Zhu X (2016) Methylation of toluene with methanol over HZSM-5: a periodic density functional theory investigation. Chin J Catal 37:1882–1890CrossRefGoogle Scholar
  21. 21.
    Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186CrossRefGoogle Scholar
  22. 22.
    Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775CrossRefGoogle Scholar
  23. 23.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefPubMedGoogle Scholar
  24. 24.
    Heyden A, Bell AT, Keil FJ (2005) Efficient methods for finding transition states in chemical reactions: comparison of improved dimer method and partitioned rational function optimization method. J Chem Phys 123:224101–224114CrossRefPubMedGoogle Scholar
  25. 25.
    Brogaard RY, Moses PG, Nørskov JK (2012) Modeling van der Waals interactions in zeolites with periodic DFT: pysisorption of n-Alkanes in ZSM-22. Catal Lett 142:1057–1060CrossRefGoogle Scholar
  26. 26.
    Ghorbanpour A, Rimer JD, Grabow LC (2014) Periodic, vdW-corrected density functional theory investigation of the effect of Al siting in H-ZSM-5 on chemisorption properties and site-specific acidity. Catal Commun 52:98–102CrossRefGoogle Scholar
  27. 27.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154CrossRefGoogle Scholar
  28. 28.
    Hansen N, Kerber T, Sauer J, Bell AT, Keil FJ (2010) Quantum chemical modeling of benzene ethylation over H-ZSM-5 approaching chemical accuracy: a hybrid MP2: DFT study. J Am Chem Soc 132:11525–11538CrossRefPubMedGoogle Scholar
  29. 29.
    Lide DR (2009) Handbook of chemistry and physics, 90th edn. CRC Press, Boca RatonGoogle Scholar
  30. 30.
    Clark LA, Sierka M, Sauer J (2004) Computational elucidation of the transition state shape selectivity phenomenon. J Am Chem Soc 126:936–947CrossRefPubMedGoogle Scholar
  31. 31.
    Sun X, Hung C, Zhang J, Chen B (2009) Location of Al and acid strength of brønsted acid in beta zeolite. Acta Phys-Chim Sin 25:1136–1142Google Scholar
  32. 32.
    Fujita H, Kanougi T, Atoguchi T (2006) Distribution of Brønsted acid sites on beta zeolite H-BEA: a periodic density functional theory calculation. Appl Catal A 313:160–166CrossRefGoogle Scholar
  33. 33.
    Kulkarni BS, Krishnamurty S, Pal S (2010) Probing Lewis acidity and reactivity of Sn- and Ti-beta zeolite using industrially important moieties: a periodic density functional study. J Mol Catal A 329:36–43CrossRefGoogle Scholar
  34. 34.
    Svelle S, Tuma C, Rozanska X, Kerber T, Sauer J (2008) Quantum chemical modeling of zeolite-catalyzed methylation reactions: toward chemical accuracy for barriers. J Am Chem Soc 131:816–825CrossRefGoogle Scholar
  35. 35.
    Maihom T, Boekfa B, Sirijaraensre J, Nanok T, Probst M, Limtrakul J (2009) Reaction mechanisms of the methylation of ethene with methanol and dimethyl ether over H-ZSM-5: an ONIOM study. J Phys Chem C 113:6654–6662CrossRefGoogle Scholar
  36. 36.
    Van Der Mynsbrugge J, Hemelsoet K, Vandichel M, Waroquier M, Van Speybroeck V (2012) Efficient approach for the computational study of alcohol and nitrile adsorption in H-ZSM-5. J Phys Chem C 116:5499–5508CrossRefGoogle Scholar
  37. 37.
    Nie X, Janik MJ, Guo X, Song C (2012) Shape-Selective methylation of 2-methylnaphthalene with methanol over H-ZSM-5 zeolite: a computational study. J Phys Chem C 116:4071–4082CrossRefGoogle Scholar
  38. 38.
    Vos AM, Rozanska X, Schoonheydt RA, Van Santen RA, Hutschka F, Hafner J (2001) A theoretical study of the alkylation reaction of toluene with methanol catalyzed by acidic mordenite. J Am Chem Soc 123:2799–2809CrossRefPubMedGoogle Scholar
  39. 39.
    Saepurahman Visur M, Olsbye U, Bjørgen M, Svelle S (2011) In situ FT-IR mechanistic investigations of the zeolite catalyzed methylation of benzene with methanol: H-ZSM-5 versus H-beta. Top Catal 54:1293–1301CrossRefGoogle Scholar
  40. 40.
    Wen Z, Yang D, Zhu X (2017) Alkylation of benzene and methanol and research progress of its catalysts. Mod Chem Ind 37:41–44Google Scholar
  41. 41.
    Sun X, Mueller S, Liu Y, Shi H, Haller GL, Sanchez-Sanchez M, Van Veen AC, Lercher JA (2014) On reaction pathways in the conversion of methanol to hydrocarbons on HZSM-5. J Catal 317:185–197CrossRefGoogle Scholar
  42. 42.
    Muller S, Liu Y, Vishnuvarthan M, Sun X, Van Veen AC, Haller GL, Sanchez-Sanchez M, Lercher JA (2015) Coke formation and deactivation pathways on H-ZSM-5 in the conversion of methanol to olefins. J Catal 325:48–59CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemistry & Chemical EngineeringLinyi UniversityLinyiChina
  2. 2.State Key Laboratory of Chemical EngineeringEast China University of Science and TechnologyShanghaiChina

Personalised recommendations